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ABSTRACT

The dissertation constitutes the first detailed theoretical and experimental investigation
of a thermoacoustic prime mover with periodic boundary conditions. There are five
significant aspects to this research: (1) using DeltaE to analyze an annular prime mover,
(2) developing an entirely new analysis program using MATLAB, (3) designing, building,
and experimentally investigating a single stack, annular prime mover, (4) experimentally
investigating a constricted, single stack annular prime mover, (5) predicting the
performance of a two stack annular prime mover. The major conclusions are: (1) A single
stack annular prime mover will not reach onset because the eigenmodes of the system do
not support thermoacoustic growth. (2) A constricted annular prime mover will reach onset
because the constriction forces dominating boundary conditions that alter the eigenmodes.
(3) A two stack prime mover is predicted to reach onset because one of the eigenmodes of

the symmetric system does support thermoacoustics.
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I. INTRODUCTION

The subject of this dissertation is the investigation of thermoacoustic prime movers in
an annular geometry. What sets this research apart from previous work in prime movers is
the nature of the boundary conditions. To our knowledge this work is the first thorough
investigation of thermoacoustic prime movers with periodic boundary conditions. The
primary conclusion drawn from this work is that a full understanding of the eigenmodes of

the system are required to design a functioning annular prime mover.

Thermoacoustic heat transport is a process through which an acoustic field generates,
or is generated from, a flow of heat. Thermoacoustic engines are of two types: heat pumps
and prime movers. A thermoacoustic heat pump utilizes a standing wave to transport heat
along the boundary of a plate situated in the standing wave. The acoustically generated heat
flow produces a temperature gradient across the stack. In other words, acoustic energy is
converted into stored thermal energy. In contrast, a thermoacoustig prime mover produces
acoustic work, by accepting heat from a high-temperature source and transferring it to a
low-temperature sink. In this dissertation a prime mover in an annular resonator is

investigated both theoretically and experimentally.

To illustrate how a prime mover operates, two conventional prime mover
configurations are described. One type (as is shown in Fig. 1.1) is a rigid-rigid standing
wave tube which contains a stack of plates called the prime mover stack (or, simply, the
stack), which is in thermal contact with two heat exchangers. In operation, a temperature
difference is imposed between the two heat exchangers, resulting in a temperature gradient
along the stack. When the temperature gradient in the stack is sufficiently large, the gas in

the resonator oscillates spontaneously at a certain frequency, with pressure antinodes at the




closed ends. The inception of spontaneous oscillation is known as onsef. Once onset is

reached, the acoustic amplitude in the resonator grows rapidly, typically reaching several

percent of the mean gas pressure.

Rigid Boundary Ambient Heat Exchanger Hot Heat Exchanger

Ambient End Prime Mover Stack Hot End

Figure 1.1 A typical rigid-rigid prime mover configuration.

The second prime mover configuration, called the Hofler tube, is a rigid-open
resonator (as is shown in Fig. 1.2). In 1983, Hofler designed and built this simple
thermoacoustic oscillator to demonstrate some thermoacoustic phenomena to his doctoral
committee at the University of California, San Diego. The sound radiated from the open

end of the pipe is impressively loud, about 100 dB re 20 Pa a meter away (Wheatley et
al., 1985; Swift, 1988).




Ambient Heat Hot Heat
Exchanger Exchanger

]
1
I
Open : Rigid
Boundary 1 Boundary
o \\
Ambient End Prime Mover Stack Hot End

Figure 1.2 The Hofler tube, an example of a rigid-open prime mover.

The condition necessary for a prime mover to reach onset is that the amount of stored
thermal energy converted to acoustic energy must exceed the total amount of acoustic
energy dissipated by thermal-viscous losses in the prime mover. This ability to reach onset
is determined by the geometry of the prime mover, in particular, the position of the stack
relative to the nearest pressure antinode. The hot end of the stack is closer to a pressure
antinode than is the ambient end. In the two examples of conventional prime movers
described above, the node and antinode positions are fixed by incorporating well-defined
acoustic boundary conditions into the system. This is an important common feature for all
conventional prime movers. The “built-in” boundary conditions also serve as convenient
starting points for computational analysis of the performance of a prime mover. Because
the relative positions of the dominating boundaries and the stack are fixed, the stack
position is optimized for only one acoustic mode. Also, the optimal stack position for
onset is not necessarily the optimal position for high amplitude performance. One of the
initial motivations for studying annular prime movers was to see if it would self-optimize

the stack location relative to the acoustic field.




Unlike a conventional prime mover, an annular prime mover (as is shown in Fig. 1.3)
does not have the typical dominating boundary condition to force a pressure or velocity

node at any particular position. Design and analysis of a functional annular prime mover

are thus made more difficult.

Hot Heat Exchanger Ambient Heat Exchanger

Hot End Ambient End

Prime Mover Stack

Figure 1.3 An annular prime mover configuration.

In a uniform cross-section annular resonator, the fundamental longitudinal mode
corresponds to the circumference being approximately equal to one acoustic wavelength.
There are two degenerate orthogonal modes that satisfy this condition. However, these
modes have no preferred orientation. The presence of a nonuniformity (for example, the
stack) breaks the degeneracy resulting in a frequency-splitting. The low frequency mode
will have a pressure node at the stack, and the higher frequency mode will have a velocity

node at the stack. (In what follows, the word “frequency” will be dropped and the modes




referred to, simply as “high” and “low”.)  Neither of these modes supports

thermoacoustics.

Although in retrospect the answer now seems obvious, prior to a thorough study of
the problem one might have argued that, once it becomes very strong, the thermoacoustic
effect may dominate the situation and shift the orientation of the acoustic field to some
preferable position. This suggests the possibility of the annular prime mover achieving
onset. Even if the uniform cross section, single stack prime mover does not reach onset,
otﬁer nonuniformities in cross section will have some effect on the spatial distribution of
the acoustic field. Hence, by placing another constriction in the annulus, the previously
mentioned pressure and velocity nodes may be displaced from the stack, providing the
possibility of the annular prime mover reaching onset. These are some of the concepts that

initiated this work.

It should be noted that a rigid-rigid prime mover can be considered a limiting case of a
constricted, annular prime mover. All the previous work on thermoacoustic prime movers
have dealt with engines that have some sort of well-defined boundary conditions imposed
upon them. There has been no detailed analysis of prime movers with periodic boundary

conditions.

A. BACKGROUND

Although thermoacoustic phenomena have been observed for a long time, significant
advances in practical thermoacoustics are relatively recent. The earliest example of a

thermoacoustic prime mover is the Sondhauss tube (Sondhauss, 1850). Over 100 years




ago, it was observed by glassblowers that a hot glass bulb attached to a cool glass tube
sometimes emitted sound at the tip of the tube. Sondhauss quantitatively investigated the
relationship between the pitch of the sound emitted and the dimensions of the tube. Lord
Rayleigh explained the Sondhauss tube quantitatively in 1896, but no complete theoretical
analysis of these phenomena was made before publication of the series of papers by
Nikolaus Rott (Rott, 1969, 1980, 1983). Later, Wheatley (1985) and -others at Los

Alamos began the development of practical thermoacoustics devices.

B. PAST RELEVANT WORKS

Past works relevant to this research fall under three headings: (1) the thermoacoustic

prime mover, (2) the acoustic Stirling Engine, and (3) the annular resonator.
1. The Thermoacoustic Prime Mover

The potential application of thermoacoustics as a heat-driven sound source has
motivated theoretical developments (Rott, 1969; Wheatley and Cox, 1988; Swift, 1988).
Work on prime movers has been focused on either rigid-rigid or rigid-open prime movers.
Some examples are outlined below. Miglori and Swift (1988) constructed a thermoacoustic
prime mover that used liquid sodium as its working fluid. A prime mover has also been
used as a heat-driven sonar projector (Gabrielson, 1991). Swift (1992) built and analyzed
a 5-inch thermoacoustic prime mover which, at its most powerful operating point, using
13.8-bar helium, delivered 630 W to an external acoustic load. With minor modifications,
this device was used by Swift (1994) to research the application of similitude to nonlinear

thermoacoustics.




The Naval Postgraduate School has been in the forefront of much thermoacoustic
research. Atchley and the author first built and tested a heat driven prime mover (Lin and
Atchley 1989), which generated a sound, at a temperature difference of 453 °C, with a
peak acoustic amplitude of 7.9% of atmospheric pressure. Subsequently, other work was
done on this device (Atchley 1992, 1993; Atchley and Kuo, 1994). 1In 1993, a
thermoacoustic prime mover was constructed by Castro and Hofler to investigate the
performance of heat exchangers and produced peak pressures of up to 20% of the mean
pressure (Castro and Hofler, 1993).

DeltaE, a program developed at Los Alamos National Laboratory by Ward and Swift
(1994, 1996) has been applied to several cases in the design and analysis of thermoacoustic
prime movers. DeltaE stands for Design Environment for Low Amplitude Thermoacoustic
Engines. It solves Rott’s wave equation for a geometry defined by the user. For example,
Swift (1992, 1996) used DeltaE to analyze the performance of a S-inch thermoacoustic
engine. Nessler (1994) used DeltaE to compare the performance of the pin stack with a
conventional stack in a thermoacoustic prime mover (Swift and Keolian 1993). Yang
(1995) and Meng (1996) also used DeltaE to predict onset of their thermoacoustic prime
movers. More recently, DeltaE was applied to analyze the efficiency of a thermoacoustic

prime mover with a pin stack (Gibson, Nessler, and Keolian, 1997).
2. The Acoustic Stirling Engine

Ceperley (1979, 1982 and 1985) has discussed acoustic engines using traveling
waves. As recognized by Ceperley and several other authors (Swift, 1988, 1995; Hofler
1988; Organ 1992), the phasing between pressure oscillations and velocity within'a Stirling
engine regenerator is the same as those of an acoustic tl"aveling wave. Ceperley proposed

the replacement of the function of the pistons in a Stirling engine by acoustic processes, to




form what he called a traveling-wave heat engine. One of his concepts, a traveling-wave
heat-driven refrigerator, is shown in Fig. 1.4. In this device, one regenerator and heat
exchanger set functions as the prime mover, adding acoustic power onto the traveling wave
as heat flows from a high-temperature heat source to a room temperature heat sink. The
other set functions as a heat pump, using acoustic power from the traveling wave to
transport heat from a low temperature to room temperature. His work was partly
responsible for motivating the author to embark on this project. However, his analysis was

overly simplistic and he never built a working device.
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Figure 1.4 Ceperley’s design for a traveling-wave heat-driven refrigerator. The

arrows show the direction of wave propagation.
3. The Annular Resonator

Previous work on annular resonators is also relevant to the study of the annular prime

mover. The eigenmodes for electromagnetic wave propagation in an annular cavity are of




fundamental interest in the radio-frequency (RF) heating of tokamak plasmas, besides
having other applications in the microwave circuit theory (Cap and Deutsch 1978, 1980;
Janaki and Dasgupta, 1990; Wu, 1992).

Another category of relevant work is the frequency splitting phenomenon found in
different fields. As early as 1969, Rudnick et al. made observations of a superfluid helium
persistent current using the Doppler-shifted splitting of an azimuthal resonant fourth-sound
mode of the cylindrical resonator containing liquid helium (Rudnick et al. 1969).
Heiserman investigated the persistent currents in superleaks in contact with bulk superfluid
helium using the Doppler shifts of the acoustic modes of an annular resonator partially
packed with a superleak, and with a simple gyroscopic technique (Heiserman, 1975). In
plasma physics, in the presence of a finite plasma current, the axisymmetric
magnetoacoustic wave resonance exhibits a frequency splitting for a finite annular mode
number between oppositely directed traveling waves (Borg and Wit, 1991). A deformation
of the cross section of a pinch of the plasma cross section also induces frequency shift and
splitting of circular modes (Ring, 1988). In the microwave and RF field, frequency
splitting can also be found in a nonuniform microstrip ring resonator (Wested and
Andersen, 1972), in an asymmetrically coupled microstrip ring resonators (Al-Charchafchi
and Dawson, 1990) and in a microstrip thombic resonator with a step discontinuity in one

of the arms (Al-Charchafchi and Boulkos, 1990; Al-Charchafchi and Schreck, 1994).

C. OUTLINE OF THIS WORK

This work constitutes the first detailed theoretical and experimental investigation of a
thermoacoustic prime mover with periodic boundary conditions. There are five significant

aspects to this research: (1) using DeltaE to analyze an annular prime mover, (2)




developing an entirely new analysis pfogram using MATLAB, (3) designing, building, and
experimentally investigating a single stack, annular prime mover, (4) experimentally
investigating a constricted, single stack annular prime mover, (5) predicting the
performance of a two stack annular prime mover.

The major conclusions are: (1) A single stack annular prime mover will not reach
onset because the eigenmodes of the system do not support thermoacoustic growth. (2) A
constricted annular prime mover will reach onset because the constriction forces dominating
boundary conditions that alter the eigenmodes. (3) A two stack prime mover is predicted to
reach onset because one of the eigenmodes of the symmetric system does support

thermoacoustic growth.
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II. THEORY

This chapter is divided into four parts. The first part is a brief review of the aspects of
thermoacoustics pertinent to the annular prime mover problem. The review draws heavily
from Swift’s work (Swift, 1988 and 1997), and is intended to introduce the concepts
required to understand the techniques used to analyze the annular prime mover. One of the
central questions to be addressed in this dissertation is the ability of an‘annular prime mover

to reach onset. The dependence of quality factor Q of the prime mover on the temperature

difference AT applied to the stack is a key measure of this ability. In this research, the

predicted Q will be determined from the complex eigenfrequency of the prime mover.
Therefore, following the review of thermoacoustics, the complex eigenfrequency will be

introduced.

Another important aspect of this dissertation is the numerical analysis of the annular
prime mover. The techniques used will be discussed in the last part of this chapter. Some
basic properties of the two-point boundary-value problem are discussed, followed by a
discussion of the advantages and disadvantages of using DeltaE with the annular prime
mover geometry. A MATLAB numerical analysis program is then described that is more
tailored to the annular prime mover than is DeltaE. The validation of this program is
discussed and the application of the MATLAB program to our annular prime mover is

presented.

This chapter concludes with a discussion of the end corrections for constrictions in the

cross section of annular resonators.
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A. REVIEW OF THERMOACOUSTICS

Thermoacoustics is essentially the study of the acoustics of a fluid in which there
exists a temperature gradient. The acoustics of such a fluid is contained in three differential
equations which relate the complex acoustic pressure and volume velocity, and the
temperature and enthalpy of the fluid. This method was first described by Wheatley et al.
(Wheatley et al., 1983). The derivations of these relationships are summarized in this
section. Once these concepts have been introduced, a description of the basic scheme used
to analyze the performance of an annular prime mover is given.

This section is essentially a summary of pertinent aspects of thermoacoustics given in
the articles by G. W. Swift (Swift, 1988 and 1997). Swift’s quantitative thermoacoustic
analysis is based on Rott’s wave equation and energy-flux equation, which result from the
momentum, mass continuity, and energy equations in the acoustic approximation. The
results are valid for arbitrary phasing between the acoustic pressure and velocity; in other
words, for both standing-wave and traveling-wave systems. The results presented in this
section serve as the basis for the numerical analysis used in this dissertation.

First, the notation that will be used throughout this discussion is established. The
acoustic wave is considered to propagate in the x direction within a duct of constant cross
section. The usual complex notation is adopted for time-oscillatory acoustic quantities.
Also, expansions to first order in the acoustic variables is assumed to suffice. Thus, the

pressure, velocity and temperature can be written

px) =p ,+p, (x)e”, 2.1)
u(x, y, 2) = u, (x, y, 2) €, (2.2)
and
12




T(x, ,y, 2)=T,x)+T, (x, y, 2) &, (2.3)

where i =+/—1 and u, is the x-component of ¥. The mean values (subscript m) are real,
but the acoustic variables (subscript 1) are, in general complex, to account for the relative
phasing of those oscillating quantities. It is assumed that the mean fluid velocity u_ = 0.

iwt

All the time dependence appears in the € term, with @ = 2 & f being the angular
frequency. For clarity, we consider here only the case of large solid heat capacity, so that
the temperature of the solid material in the stack is simply T (x), independent of 7, y, and z.

The conservation of momentum of an incompressible viscous fluid is ( Landau, 1975)

+ (7 egrad) ¥ = - %gradp +% vy, 2.4)

&F

ot
where v is the velocity, p is the density, p is the pressure and u is the dynamic viscosity of
the fluid in the resonator. This is called the Navier-Stokes equation. To develop a
quantitative understanding including viscous effects, we begin by finding the y and z
dependence of the velocity. Because of the viscous boundary layer in the y and z direction
all other viscous derivatives can be neglected compared to uo’u,/dy’ and po*u /07>

Equation (2.4) then reduces to

2 2
d2°u, d%u,

iop,u = " + U (8y2 + EZ_) 2.5)

Equation (2.5) is an ordinary differential equation for u,(y, z). The boundary
condition at the solid surface is u; = 0. With this boundary condition Eq. (2.5) can be

solved to yield
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] d,
w(x, y, z2)= — [1-A,(y, z)]ﬂ , (2.6)
wp,, dx

where 4,(y, z) depends on the specific geometry under consideration. The volume velocity

is the spatial average over y and z of Eq. (2.6) and is thus

_ A
Ui(x) = i (g.5) %0
wp,,

P (2.7

where f, is the spatial average of 4 (y, z). For the case of parallel-plate geometry of the

stack used in this work, it can be shown that (Swift 1988; Arnott ét al. 1991)

cosh[(1+)y/é,]

h(y)= .
VO = y,/8,1 (2.8)
and
tanh{(1 + i)y, /5, ]
_ , 2.9
L [(I+1)y,/d,] (29)

where 0, = W is the fluid’s viscous penetration depth and y, is plate half-gap.
Calculation of the oscillating fluid temperature is accomplished using only the first
order terms in the general equation of heat transfer (Landau, 1975). The entropy is
expressed in terms of the acoustic pressure and temperature of the fluid and the resulting
ordinary differential equation is solved subject to the appropriate boundary conditions. In

the presence of a temperature gradient along the duct, the solution is (Swift 1988 and 1997)

i dT, _ h -oh -
T,(x, y)= 1-h1p, + n (1.2 T T, @10
= Wkl A (T U @10

where o=c, y/x is the Prandtl number, and ¢, is the isobaric heat capacity per unit mass.

The spatial average in (y, z)-direction of Eq. (2.10) can be written
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2 — 1 _ l dTm _f;r - o-fv Ty
M= = [ fdp + e (2T e

where f, is the spatial average of 4. The functions h_and f, are the same as A, and f,, only
with 8, replaced by 6, = \/W , the thermal penetration depth, where K is the thermal
conductivity of the fluid. The function f, and f, are very important.in. thermoacoustics and
describe how viscous and thermal processes affect the oscillatory velocity and temperature
in the acoustic field. A graph of £, as a function of y/9, is shown in Fig. 2.1.

The equation of continuity is (Landau, 1975)

%g +V e (pF) = 0. 2.12)

To first order, the x-component of Eq. (2.12) can be reduced to the form

. d(pm M])
— = 0. 2.13
iop + =~ (2.13)

Equation (2.13) can be rewritten in terms of volume velocity

1 d(p. U1)
jwp, + ———= = 0. 2.14
twp, Agas dx ( )
Combining Egs. (2.10) and (2.13) yields
dﬁl ia)Agas (fx - fv) 14T, —
—_— = - ——14+(y -1 + ——U,, 2.15
dx pmc2 [ (y )fx]pl (]—fv)(l-o') Tm dx 1 ( )

where c is the speed of sound in the gas, and 7 is the ratio of isobaric to isochoric specific

heats.
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We pause to discuss the results derived in the last several paragraphs. Equation (2.7)
shows that the gas which is much farther than &, from the nearest solid surface experiences
essentially no viscous shear and moves with a velocity that depends only on x. The gas
that is much closer than §, is nearly at rest. Gas that is between these extremes moves with
a reduced velocity amplitude and significant phase change. The terms in Eq.l (2.1D)
indicate that there are two contributions to the oscillatory temperature. The first term is
simply due to the adiabatic compressions and expansions of the fluid. The second term
comes from the convection of gas parcels along a temperature gradient. The net
temperature oscillation is just a linear combination of these two effects. It should be
pointed out that f, has the same functional dependence as y/0, as is portrayed in Fig. 2.1
for f,.

Equation (2.15) has an easy physical interpretation. It indicates that dU, /dx comes
from a density oscillation in the fluid. This density change can be caused by a pressure

change or by convection of gas along the temperature gradient.
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Figure 2.1 The real and imaginary parts and magnitude of f, as functions of the ratio

y/d, for the case of parallel plate geometry.

Next, following the derivation by Swift (1988 and 1997), the time averaged energy

flux along the stack can be found as

; 1 7 (fe - 1)
= - 1-
I{2 > Re[p] Ul ( (1+O')(1—fv*))}
P, ¢, Ui’
£ 21 ~Im
20 A, (1-0%) [1- f,|

(2.16)
ar,

dx

wdT,
(fx+o-fv)dx-(

A K + Asoild K.solid)

gas ’

where the superscripts * represent the complex conjugate of a complex quantity, and x,
is the thermal conductivity of the solid. On the basis of Swift’s assumptions, in steady
state for an engine without lateral heat flows to the surroundings, H, along x must be a

constant throughout the stack.
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To numerically analyze the performance of thermoacoustic engines, it is recognized
that Egs. (2.7), (2.15) and (2.16) comprise a set of three second-order coupled complex
differential equations in the five variables Re(p)), Im(p,), Re(ﬁl), Irn(ﬁl) and 7. These
equations are the basis of both DeltaE and the MATLAB program presented later in this
chapter.

In order to obtain a more useful form of the differential equation for p,(x), Eq. (2.7)
can be written as

dp, Lap,

o 0 Ui(x). (2.17)

In a duct region, the integration is governed by Egs. (2.15) and (2.17) and the temperature
gradient d7,/dx is determined by the measured temperature profile. It is assumed that there
is no temperature gradient across the heat exchanger. As a result, in a heat exchanger,
integration is carried out by Eq. (2.17) and a simplification of Eq. (2.15) |

dU, A,

E— = - W[I"f‘('y—l)‘fx]pl . (2~18)

As for the stack region, integration is based on Egs. (2.15), (2.17), and (2.19). In
other words, the time averaged energy flux h.fz is only used in the stack region and is a
constant throughout the stack region.

The MATLAB numerical analysis method used in this work starts with specifying
Re(p,), Im(p,), Re(U)), Im(U)), T, Re(f), and Im(f) at a point in the duct. The complex
pressure and volume velocity just outside the starting end of the ambient heat exchanger can
be determined by integrating Egs. (2.15) and (2.17) in the boundary layer approximation

limit. Next, the complex pressure and volume velocity can be determined just inside the
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starting end of the ambient heat exchanger by invoking continuity of pressure and volume
velocity at the end of the ambient heat exchanger. Then, Egs. (2.17) and (2.18) are used to
integrate over the ambient heat exchanger. Continuity of pressure and volume velocity is
used to enter the stack. A value of 11;2 is specified to get dT_/dx at the beginning of the
stack. The solution in integrated to the heat exchanger. Again Eqs. (2.17) and (2.18) are
integrated over the hot heat exchanger. Finally, the pressure, volume velocity, and the

temperature at the exit of the hot heat exchanger are matched to those at the starting point.

B. COMPLEX EIGENFREQUENCY

The transition to onset in a prime mover is conveniently discussed in terms of the
quality factor Q which can be defined as the ratio of 2m times the energy stored in the
resonator to the energy dissipated per acoustic cycle. Letting W denote the dissipated

power,
Q= —=, (2.19)

Both W and E_ are second order in the acoustic amplitude. A typical prime mover is
comprised of five sections: the ambient duct, the ambient heat exchanger, the prime mover
stack, the hot heat exchanger, and the hot duct. W is then the sum of the power dissipated

in the five individual sections (Lin, 1989; Atchley, 1992 and 1994)

W = Wamb"*’ v.Vambhx + mes + ‘i]hothx + What- (220)

The subscripts amb, amb hx, pms, hot hx, and hot refer to the ambient duct, the ambient

heat exchanger, the prime mover stack, the hot heat exchanger, and the hot duct,
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respectively. The reader should refer to Atchley (Atchley et al., 1992) and Lin (Lin, 1989)
for a full explanation.

Instead of O, we prefer to use the reciprocal of Q, because 1/Q converges to zero at
onset rather than diverging to infinity. Also, it is this quantity that is proportional to the
acoustic power output of the prime mover. It is worth mentioning that 1/Q is a function of
the prime mover geometry, the thermophysical properties of the-gas, p_, and the
temperature difference. As the temperature difference along the stack increases from zero,
the thermal losses in the stack decrease and eventually become negative, representing gain.
In other words, below onset 1/Q is positive, at onset 1/Q is zero and above onset 1/Q is
negative. A complete evolution of Q through onset for a prime mover is discussed by
Atchley (Atchley, 1994).

In this work, the Q is determined by the complex eigenfrequency. Complex
eigenvalues occur when a system has underdamped modes. The excitation of a resonator
evolves in time as exp(i®,f) where the eigenfrequency is (Swift, 1988; Gamaletsos 1993;

Arnott et al., 1994)

Wy = 2nf, + i % , (2.21)

where f, is the real resonance frequency. The quality factor Q thus can be found by

Re(a,)

€= (e,

(2.22)

It should be noted that the complex eigenfrequency approach accounts for power

generation in the stack and dissipation everywhere in the resonator. If this approach were
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not used, an artificial acoustic source would have to be introduced into the system to deliver

power to match boundary conditions (Choe, 1997).
C. THE ANNULAR GEOMETRY FOR A PRIME MOVER

As discussed in the previous chapter, the major difference between conventional prime
mover geometry and that of an annular prime mover is that there are no typical dominating
boundary conditions in the latter. Instead, an annular prime mover satisfies the periodic

conditions

p(r,0) =p(r, 0+27m), (2.23)

and

Ui(r, ) = Ui (r, 0+2 7). (2.24)

At first glance, this difference does not seem to cause much difficulty in the design and
analysis of an annular prime mover, until one realizes the fact that almost all the previous
work on conventional prime movers employ some dominating boundary condition as a
convenient starting point of their analysis. Elimination of these boundary condition makes
research on an annular prime mover considerably different from that of a conventional
prime mover.

It can be shown that an annular resonator can be modeled as a straight duct having an
effect length L, that is related to the inner and outer radii of the annulus and the particular
mode under consideration (Choe, 1997). Therefore, we will treat the annular prime mover
as a straight duct having periodic boundary conditions. L . can be obtained by first writing

the general solution of the wave equation in cylindrical coordinates which includes a linear
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combination of the cylindrical Besseli and Neumann functions. Note that the Neumann
function must be retained because the origin is excluded in the annular resonator. The
effective circumference of the resonator can be then obtained by applying rigid boundary
conditions at the inner and outer walls of the annulus. The annulus used in the experiments
presented later has inner and outer radii of 10.0 and 15.3 cm, respectively. The height of
the duct is 5.0 cm. The cutoff frequency for cross modes is approximately 6.6 kHz. We
are interested in the fundamental longitudinal mode (1 = L) corresponding to frequencies

in the 400 ~ 450 Hz range, well below cutoff.

D. COMPUTER SIMULATION OF THE ANNULAR PRIME MOVER

This subsection discusses the numerical analysis techniques for the annular prime
mover. For the purpose of numerical integration in a thermoacoustic engine, Egs. (2.7),
(2.15), and (2.16) can be rewritten as a set of five, first order, ordinary differential
equations in terms of five independent acoustic variables: Re(p,), Im(p,), Re(U1), Im(U))
and T,.

dRe(p,) i0p, A, —
dim(p) _ [ iopuAy, & o (2.26)
dx (1-£,)
dRe(ﬁl) A, (fc-£) 1 T, — |
= Re{- e A GRS T 20 2
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amU) ol A (f-f) 14T,
- Im{ > [1+(r=1)£]p + oL & Ul}, (2.28)

ar, _ |H» 1 Replﬁi‘(l- (f,f-fv)*J .
dx A, 24, (+0)1-1,)

P €, |51|2 Im(f, + of,’) _
242, (1-0)[1-f,|  Re(®) Ay

(2.29)

_ Zsoild

Ksolid

Our intention is to solve this set of coupled ordinary differential equations for Re(p,),

Im(p,), Re(U1), Im(U,) and T, subject to the periodic boundary conditions at the ends of

the prime mover. This is the same basic method employed by DeltaE.

1. Problem Statement

When ordinary differential equations are required to satisfy boundary conditions at
more than one value of the independent variable, the resulting problem is called a two point
boundary value problem. Determining the deflection of a bar rigidly fixed at both ends is a
typical example where the conditions specified are the deflections of the elastic curve at the
supports. Heat-flow problems often fall into this class when temperature or temperature
gradients are given at two points. The problem encountered here is of this kind, too.

A major distinction between initial value problems and two point boundary value
problems, as is pointed out by Press (Press et al., 1992), is that in the former case one is
able to start an acceptable solution at its beginning (initial values) and just march it along by
numerical integration to the end (final values). However in the latter case, the boundary

conditions at the beginning point do not determine an unique solution to start with. For this
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reason, two point boundary value problems require considerably more effort to solve than
do initial value problems. Keller (Keller, 1992) has discussed the existence and
uniqueness theory for two point boundary value problems.

Two different numerical approaches to the annular prime mover are applied in this

dissertation: DeltaE and a MATLAB program.
2. DeltaE

DeltaFE is a computer program, developed by Bill Ward and Greg Swift at Los Almos
National Laboratory, for modeling and designing thermoacoustic and other one-
dimensional acoustic apparatus. Basically, DeltaE solves the one-dimensional wave
equation based on the usual low-amplitude acoustic approximation. It numerically
integrates the wave equation in a gas or fluid, in a geometry provided by the user as a
sequence of segments, such as ducts, transducers, compliances, heat exchangers and
stacks. It uses continuity of oscillating pressure, oscillating volume velocity, and mean
temperature to pass from the end of one segment to the beginning of the next. It uses the
appropriate wave equation and temperature equation for each segment. The iteration is
controlled by global parameters such as frequency and mean pressure, and by local
parameters such as the geometry of a segment and enthalpy flow. By defining a series of
inputs, global parameters (the guess vector), the desired outputs, and boundary conditions
(the target vector), the problem is solved iteratively. Guesses are updated until targets are
achieved. The number of elements in the target vector must equal the number of elements
in the guess vector, otherwise the system is over- or under-determined. When the

computed and specified targets agree to within a specific tolerance, the solution is said to
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converge. All calculations in DeltaE are performed in double precision and the user may set
the error tolerance for matching targets.

In general, because a pass of DeltaE’s integration does not reach the end with targeted
values of all variables, a shooting method is used to adjust chosen initial variables in order
to hit the target values. The user provides guesses for chosen initial variables. A
successful convergence of DeltaE depends heavily upon a-good choice of guess and target
members. A good guide to the choice of guess and target variables is discussed by Ward
and Swift (Ward and Swift, 1996).

DeltaE is very versatile due to the fact that the elements of the guess vector are not
limited to the conventional choices consisting of real and imaginary parts of p, and U,.
Any variables that have an effect on the target vector variables can be used as a guess. This
feature enables DeltaE to compute resonance frequency, temperature, and geometrical
dimensions in order to satisfy specified boundary conditions. DeltaE is very efficient at
converging to solutions for some complicated acoustic systems, however, it knows nothing
about acoustics or physics. For example, it does not recognize that negative frequencies,
negative pressures or negative lengths are physically meaningless. It simply does the
integration. Therefore, the reasonableness of the solutions produced will almost always
depend on the quality of the initial guess vector and choices of the guess-target vector.

To apply DeltaE to the annular prime mover the boundary conditions are incorporated
into DeltaE’s target vector. The unknown conditions at the BEGIN segment, which DeltaE
is supposed to find, are in DeltaE’s guess vector. To implement the periodic boundary
conditions into DeltaE, a SOFTEND segment is inserted right after the initial BEGIN
segment in the input file of the DeltaE program. Another SOFTEND segment (or they can
both be HARDEND segments) is used at the end of the model. Four DIFFTARGETSs are
specified which match the amplitude and phase of p, and U, at these two SOFTEND
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segments (Ward, 1997). The SOFTEND segments serve only as a tool to calculate the
outputs and will be ignored in the target vector. SOFTENDs do not force the impedance to
be zero. A given temperature across the prime mover stack is achieved by selecting the
temperature at the hot heat exchanger as a target and the amount of heat input to the ambient
heat exchanger as a guess vector. We now have five targets and only one guess; four more
guesses are still required. The other four guesses have been selected to be the amplitude
- and phase of p, and U, at the beginning segment. These guesses and targets (as are shown

in Appendix B) are summarized in Table 2.1.

Guess vector Target vector
1. Ip; (begin)! L. Ip,(begin)l - Ip,(end)l < &
2. Phase|[p, (begin)] 2. Phase[p,(begin)] - phase[p,(end)] < £
3.1U (begin)l 3. 1U; (begin)! - 1U; (end)l < ¢
4, Phase[ﬁ; (begin)] 4, Phase[[_]1 (begin)] - phase[l_h (end)] < ¢
5. Heat input at ambient heat exchanger 5. Hot heat exchanger temperature

Table 2.1 Summary of the guess and target vectors in the DeltaE input file for the annular

prime mover. €represents the tolerance for convergence.

The important parameters for this work are the Q, the resonance frequency and the
mode shape of the prime mover. To attain these desired quantities, more deliberation has to
be made in determining the input file. Two methods can be utilized to find the QO with
DeltaE (Ward, 1997). In the first method, the Q can be obtained indirectly by adding an
artificial driver into the system, sweeping its frequency, and computing the frequency

response of the system. The resonance frequency and half power points can be extracted
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from this analysis. An alternate method is to compute the ratio of the stored energy to the
dissipated energy. The stored energy is computed by adding an artificial driver,
determining the pressure and velocity throughout the system and integrating the energy
density. The dissipated energy is computed from the work done by the driver to excite the
system. Since DeltaE only computes the pressure and velocity at the exit of a segment, the
system must be broken into many segments to get a reasonable approximation to the stored
energy. Thus the frequency response method was chosen to find the Q and resonance
frequency. A side branch electroacoustic transducer was used as a driver, which has
frequency independent parameters. A MATHEMATICA program (refer to Appendix A)
was also developed to compute a least squares fit to the frequency response to find Q and
resonance frequency. After finding resonance frequency, the system is then driven at
resonance. To attain a detailed modal shape, the prime mover has to be divided into many
small segments. The modal shape is a plot of the pressure at the end of each segments of
the converged solution as a function of segment location.

DeltaE is a very useful tool to predict how a given thermoacoustic apparatus will
perform, or for helping the user design an apparatus to achieve a desired performance.
However, it does have several disadvantages when applied to the annular problem. As was
mentioned in Chapter I, in the presence of a stack, an annular prime mover exhibits
frequency splitting. The degree to which a particular mode is excited depends on the
location of the driver relative to the stack. Because of dissipation, Q for each mode is
finite, which means that the two modes may overlap in the frequency domain. In terms of
a driven acoustic system, this manifests itself as a multimode excitation. When only one
mode is excited, it is straightforward to find Q and resonance frequency by a leastvsquares

fit to the frequency response curve. However, in the case when the driver excites two
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mode simultaneously, some other technique, for example pole-zero analysis, must be used
to determine Q and resonance frequency for each individual mode.

Another disadvantage comes from trying to map out the mode shape with DeltaE. In
DeltaE, values of acoustic pressure are only provided at the end of each segment.
Therefore, to obtain a detailed mode shape, the prime mover must be divided intq many
small segments. This inherent property makes it is laborious and-impractical to use DeltaE
to find the mode shape.

The other disadvantage is that currently there is no straightforward way to apply an
externally-imposed temperature gradient on a resonator duct (Ward, 1997). This limitation
makes it very difficult to model an annular prime mover and incorporate measured
temperatures along the duct into the numerical model.

Because of the disadvantages of applying the DeltaE program to our problem a
decision was made to develop our own program. This program, written in MATLAB, was
validated by comparing the results for a simplified annular prime mover with DeltaE

results.

3. MATLAB Program
~a. Approach

One important aspect of this dissertation is to develop a numerical analysis
program that is more tailored to the annular resonator problem than DeltaE. The program
implements the shooting method because it appears to be a straightforward way to solve
boundary value problems. This method also provides a systematic approach to taking a set
of ranging shots that allows us to improve our aim systematically (Keller, 1992; Press et

al., 1992). The program uses functions that already exist in MATLAB where possible.
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A complete explanation of the procedure of the shooting method can be found in
Press (1992) and Gerald (1994). Only a summary is presented here. Most differential
equations of order higher than first can be reduced to coupled sets of first-order differential
equations. The two point boundary value problem is equivalent to obtaining the solution to
a set of N coupled first-order differential equations, satisfying N periodic boundary
conditions at the starting point x, and at the end pointx;.
We start by writing Egs. (2.25) through (2.29) in a general form
) g

(% Y1 Yarwedn) . i =120, N, (2.30)
dx

with the periodic boundary conditions at the starting point x, and final point x, expressed as

Yi(%ar Yo Yarer ¥u) = ¥i(Xp0 Yi» Ypseen Yy ) i=12...,N (231

where, in our problem, N equals five.

To solve this boundary value problem, an initial value problem is created by
assuming five initial values. The MATLAB function ode45, which implements fourth and
fifth order Runge-Kutta formulas is then used to integrate the differential equations from x,
to x,. The local error term for the fourth-order Runge-Kutta method is O(%’) and the global
error would be O(4*), where # is the step size of the integration (Celia and Gary, 1992;
Gerald and Wheatley 1994). Now, at the final point x,, a discrepancy vector F is defined
with the dimension of N, whose components measure how far the first solution attempt is
from satisfying the boundary conditions at x,. The problem now becomes one of finding

the vector F such that

F (3 y2ou¥y) = 0, i=12..,N. (2.32)
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To find the roots of this equation the Newton-Raphson method is employed. This method
provides a very efficient means of converging to a solution, if a sufficiently good initial
guess is given (Press, 1992).

Let y denote the entire vector of values ¥ In the neighborhood of y, each of the

functions F, can be expanded in a Taylor series about Yo as (Press, 1992)

N OF,
F(y) = F(y, +®) = 25; &, +0(&?). (2.33)
j=1
The matrix of partial derivatives, known as the Jacobian matrix, J is defined as
dF,
J, = —. (2.34)
ij ayj

Since it is difficult to compute the matrix J analytically in this problem, finite differences
are used to compute this matrix. In the MATLAB program, this is accomplished by
perturbing each y, individually and finding the value of the vector of AF /Ay (x,).

Equation (2.34) can be expressed in the matrix form

Fy+&) = F(y) + Je& +0(&") . (2.35)

To obtain a set of linear equations for the correction vector Oy, terms of order 8y2

and higher are neglected. Setting F(y+3y) = 0, gives

Je& = - F(y). (2:36)

& = -J'F(y). (2.37)
In practice, J' is obtained by LU factorization. In MATLAB notation, dy is given by
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& = -J\F(y), (2.38)

where \ is used to denote left division.

The LU factorization implements Gaussian elimination. Because it involves the
least amount of arithmetic operations, Gaussian elimination is generally considered to be
one of the most efficient computation methods in the problem of solving a system of linear
equations (Leon, 1994; Lindfield and Penny, 1995). It is worth pointing out that using
J\F(y) instead of inv(J)*F(y) in MATLAB is two or three times faster and produces
residuals on the order of machine accuracy relative to the magnitude of the data (The Math

Works, 1994). Once dy is found, the solution vector is then updated as

ynew = yold + 6y (239)

The process is iterated until the solution converges, i.e. when the value of the normalized
norm of the discrepancy vector F is smaller than a desired threshold.

In order to formulate a program to model the annular prime mover, the parameters
to be updated at each pass of the integrations must be identified. These parameters are
selected to be: the real and imaginary parts of the volume velocity U, and the complex
frequency @, and the time-averaged energy flux along the stack H , . Re(p,) and Im(p,) are
kept constant at x =0, which simply normalizes the amplitude of the pressure variation.
In fact, for given values of Re(p,) and Im(p,), a unique solution can be obtained for a
certain value of I§2. The periodic boundary conditions are satisfied by matching the
acoustic pressﬁre p, and the acoustic volume velocity U, between the starting and final
| points. Also the temperature at the hot heat exchanger is matched to a certain value while

keeping the temperature of the ambient heat exchanger a constant.
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b. Description

The complete MATLAB program is described in Appendix C. This section
provides a brief explanation of how the program works. First, the coordinate system for
the prime mover (as is shown in Fig. 2.2) is defined. The hot heat exchanger is at one end
of the system. The end of the hot heat exchanger is at x = L, The choice of the position
of x =0 is arbitrary, however by putting the stack ;nd heat exchangers at the end, only

four distinct regions are required. Had the stack been placed in the middle, there would

have been five.
Duct Ambient Heat Prime Mover Hot Heat
Exchanger Stack Exchanger
; Periodic E Periodic
! Boundary = Boundary
x=0 x=Leff

Figure 2.2 Coordinate system used in the numerical analysis of the annular prime
mover.

Initial values of the real and imaginary parts of Py» @ measured temperature profile
T (x) along the duct and ambient heat exchanger, and a temperature for the hot heat
exchanger, 7, are given. The real and imaginary parts of U, the real and imaginary parts
of the resonance frequency @ and the time-averaged energy flux along the stack 11.72 are

guessed. It is assumed that the temperature of the duct and the ambient heat exchanger are
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held at certain values by external means. A set of reasonable initial guesses, which can be
estimated from the output of DeltaE, is the key to successful convergence of the program.
The desired temperature of the hot heat exchanger (7, in the program) is accomplished by
adjusting the time-averaged energy flux along the stack H , . The targets to be matched are
the real and imaginary parts of p, and U, at x =0 and x = L, and the temperature of the
hot heat exchanger. This matching is accomplished by adjusting the real and imaginary
parts of U, the real and imaginary parts the complex angular frequency , and the time-
averaged energy flux along the stack. It is also assumed that there are no temperature
gradients in the ambient and hot heat exchanger.

Once the required input parameters are determined. The program solves the
system of equations for the five unknown variables. If the resulting new p,, U, and T,
differ significantly from the initial guesses it is necessary to update the guesses and do the
integration again. During the integration, all the temperature dependent parameters and gas -
parameters are calculated according to the temperature distribution. This whole process is

repeated to convergence.

¢. Validation

This program was validated by comparing its solution to that using DeltaE for a
simple case, in which it is assumed that the temperatures of the entire duct and the ambient
heat exchanger are held at 293 K by some external means. The desired temperature of the
hot heat exchanger is achieved by adjusting the quantity H 5

The comparisons of the results from the two programs are shown in Figs. 2.3
through 2.8. Figure 2.3 shows resonance frequency vs. AT, with AT increasing from

0 K to 240 K. Figure 2.4 shows 1/0 vs. AT over the same temperature difference span
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as in Fig. 2.3. The overall agreemént of resonance frequencies and 1/Q from the two
methods is good. In fact, the normalized mean square errors of the resonance frequency
between two methods are 1.48x10°% and 6.10x10°% for the low and high frequency
mode, respectively. The normalized mean square error of 1/Q between two methods are
0.684% (low frequency mode) and 0.854%(high frequency mode). The value of 1/Q
calculated from DeltaE is determined from a pole-zero analysis of the frequency response.
The value of Q so determined is sensitive to the bandwidth and weighting used in the fit.
The error bar attached to the AT = 200 K data point indicates the uncertainty and accounts
for most of the disagreement at higher values of AT. One reason for the dependence of Q
on bandwidth is the multimode excitation. A driver was incorporated in the DeltaE
program to find the frequency response, from which we obtain the required modal
information. The driver locations are selected such that at AT = 0 K there is only one
mode being excited. However, as AT is increased, the mode shapes can be altered and the
previous driver position may excite both modes simultaneously. This can be seen in Figs.
2.5 and 2.6 which show the frequency response of the low mode and high mode of the
prime mover from DeltaE for three values of AT. For higher the AT, the effect of high
mode excitation is clearly visible as a small bump in the frequency response of the low
mode. However, no such bump is observed in the frequency response of the high mode.
Figures 2.7 and 2.8 show the mode shapes for the low frequency mode with»
AT=0K and AT =100 K. Figures 2.9 and 2.10 show the mode shapes for high -
frequency mode with AT=0K and AT =100K. In these figures, the solid lines
represent the results of the MATLAB program and the open circles represent the results of
the DeltaE program. The mode shapes from DeltaE have been normalized to the highest
value of the pressure amplitude. The amplitude of thé mode shape from the MATLAB

program is determined from a least squares fit to the DeltaE results.
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It is seen that one of the advantages of the MATLAB program is the smooth
mode shape curve. The agreement of the mode shapes are good in general. However the
agreement of the low frequency mode is not as good as for the high frequency mode,
particularly at high temperature difference. The reasons for this discrepancy at higher
values of AT are not fully understood. It should be pointed out that the two programs treat
the heat exchangers differently. The MATLAB program assumes that the mean gas
temperature at the heat exchanger equals the temperature of the heat exchanger. However,
DeltaE imposes a thermal impedance so that the gas and heat exchanger temperatures differ.

Figure 2.8 displays one interesting feature. Both program predict a low standing
wave ratio. This feature is not present in the high mode.

Although there remain small disagreements between DeltaE and the MATLAB
program, the major features are in good agreement. In the chapters to follow, the
MATLAB program will be used to analyze the annular prime mover under more realistic
conditions. The major difference is that the measured temperature profiles are incorporated

in the program.
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Calculated resonance frequencies VS DeltaT for the annular prime mover
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+  Low mode: Matlab program
4451 O Low mode: DeltaE program 4
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Figure 2.3 Comparison of the calculated resonance frequencies of the annular prime
mover as determined from the MATLAB program and DeltaE. Symbols are explained

in the legend. Agreement is excellent at all values of AT. The normalized mean square

error is 1.48x102% for the low mode and 6.10x10°% for the high mode.
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Calculated 1/Q VS DeltaT for the annular prime mover

0.04 | ¥ T ¥
+ Low mode: Matlab program
+  Low mode: DeltaE program
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Figure 2.4 Comparison of 1/Q of the prime mover vs. AT as determined from the

MATLAB and DeltaE. An error bar is indicated for the low mode at AT = 200 K.
Because of modal overlap, determination of 1/Q in DeltaE is not without uncertainty.
Agreement is better at low AT. The normalized mean square error is 0.684% for the

low mode and 0.854% for the high mode.
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Frequency response of the low mode for the annular prime mover
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Figure 2.5 Frequency response of the prime mover from DeltaE (low mode) at

AT=0K, 100K and 200K. Note the small bump at about 436 Hz on

AT =100 K and 200K curves which is a result of mode overlap.
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Frequency response of the high mode for the annular prime mover
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Figure 2.6 Frequency response of the prime mover from DeltaE (high mode) at

| | 1 ! { !

AT =0K, 100 K and 200 K. Notice that there is no visible bump from overlap.
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Low mode with DeltaT = 0 Kelvin ; frequency = 419.2+6.038i
1 T
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o
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Figure 2.7 Comparison of mode shapes of the prime mover at AT = 0 K for the low

frequency mode as calculated with the MATLAB program and DeltaE. The beginning
of the stack region is indicated by the dashed vertical line.
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Low mode with DeltaT = 100 Kelvin ; frequency = 422.3+6.192i
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Figure 2.8 Comparison of mode shapes of the prime mover at AT = 100 K for the

low frequency mode as calculated with the MATLAB program and DeltaE. Although
both programs predict the same general mode shape, the agreement is not as good at

AT = 0 K.

41




High mode with dT = 0 Kelvin ; freq = 437.1+2.013i
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Figure 2.9 Comparison of mode shapes of the prime mover at AT = 0 K for the high
frequency mode as calculated with the MATLAB program and DeltaE.
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High mode with dT = 100 Kelvin ; freq = 437+2.137i
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Figure 2.10 Comparison of mode shapes of the prime mover at AT = 100 K for the
high frequency mode as calculated with the MATLAB program and DeltaE. The

agreement is much better than for the low mode at AT = 100 K.
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E. END EFFECTS

The usual boundary conditions applied to a change in cross section are continuity of
pressure and volume velocity. However, at the discontinuity an additional acoustic
impedance is introduced owing to the abrupt change of cross sectional area (Miles, 1946
and 1947; Karal, 1953; Pierce, 1991). As a matter of fact, we have shown (Choe, 1997)
that it is critical to take into account end corrections at the constriction to get good
agreement between the measured and predicted resonance frequency and mode shapes for a
constricted annular resonator.

Sudden changes in duct cross section produce sudden changes in acoustic pressure
amplitude. Below cutoff, the effect is equivalent to a lumped-parameter impedance. For
example, a constriction in a duct gives rise to a concentration of flow through the
constriction that consequently increases the kinetic energy density. As is discussedv by
Morse and Ingard (1968), if the net increase is concentrated in a region small compared to a
wavelength, the total increase can be characterized by a lumped acoustic inductance. If the
constriction also produces an increase in viscous energy loss, this addition can be modeled
as a lumped acoustic resistance.

This equivalent lamped impedance can be obtained from various methods. Only two
methods, the conformal transformation method and the higher order mode method, are
discussed here.

After computing the analogous acoustical impedance Z, the boundary condition for the

pressure becomes.

p(l) = p(l) - Z*U,(1), (2.40)




where p, is the pressure in the unconstricted region and p, is the pressure in the
constriction. U, is the volume velocity in the unconstricted region and the constriction

junction is at x = /. The volume velocity boundary condition is unchanged.

1. Conformal Transformation Method

The first method used to compute the lumped impedance-introduced by a constriction
is discussed by Morse and Ingard (1968). To obtain the analogous impedance of a
constriction, they compute the extra kinetic energy and viscous-energy loss produced by
steady flow through the constriction. To find the steady-state flow, the interior of the half-
duct is first transformed to the upper half of a complex w plane by the Schwartz-Christoffel
transformation. Next, depending on the geometry of a specific problem, a further
transformation is required to go from the w plane to the velocity-potential plane in which
the lumped impedance can be readily obtained.

Morse and Ingard applied this technique to the case of a rectangular duct of depth d
and width b for x <0 and g for x >0 (as shown in Fig. 2.11). The lumped-circuit
inductance and resistance corresponding to the sudden increase in the cross section of a

rectangular duct are

2 2
L = £(lazbyarb g latb) ) 2.41)
md| 2ab a-b 4ab

and

R, =
2ad b

2 _ g2
pwd, a-b [1 P 1n“+b). 2.42)

mab a-b

Notice that both L, and R, vanish when a = b (i.e., when there is no change in width).
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Figure 2.11 Section of a rectangular duct with sudden change of width in the y
direction.

2. Higher Order Mode Method

This method involves including higher order modes near the constriction ends
(Muehleisen, 1996). In this work, Muehleisen examines the reflection, transmission,
radiation, and coupling of higher order modes at a discontinuity in finite length rigid wall
rectangular ducts. Using a method of generalized scattering coefficients, an analytic
expression for the reflection and transmission of higher modes at size discontinuities is
developed.

From the scattering matrix formulation an expression for the lumped acoustic
impedance can be found (Muehleisen, 1997). This method does not include losses,

however, and so the resistance obtained by conformal mapping is added to the impedance.
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III. EXPERIMENTAL APPARATUS AND PROCEDURE

A. INTRODUCTION

Descriptions of the experimental apparatus and data acquisition procedure are
presented in this chapter. The chapter begins with a discussion of the annular resonator.
This resonator was used in preliminary work to measure the modal properties of a
constricted annular resonator in the absence of a stack (Choe, 1997). This discussion is
followed by a detailed description of the annular prime mover. Next, the constricted
annular prime mover is discussed, followed by a description of how the prime mover is
instrumented with microphones and thermocouples. The calibration of the microphones is
discussed in this subsection as well. The chapter concludes with a description of the

procedure followed during data acquisition.

B. EXPERIMENTAL APPARATUS

1. Annular Resonator System

The annular resonator, shown in Fig. 3.1 (without the top) and Fig. 3.2 (with the top)
has been used in a preliminary work to investigate the modal properties of a constricted
annular resonator (Choe, 1997). The inner and outer radius of the resonator is
10.00 £ 0.01 cm and 15.30 + 0.01 cm, respectively. The outer side wall is a 1 cm thick
aluminum ring with 15.30 £ 0.01 cm inner radius. A solid aluminum 10 cm radius
cylinder that is concentric with the outer ring forms the inner side wall. The height of the

resonator is 5.00 = 0.01 cm. The dimensions of the resonator were chosen to give a

47




longitudinal resonance frequency in the 300 to 500 Hz range, which is well below the
cutoff frequency for the first cross mode, as discussed in Chapter II.

Since the prime mover will be operated at temperatures over 200 °C, the plexi-glass
top described in Choe has been replaced by a 0.64 + 0.01 cm  thick aluminum top with a
radius of 16.01 £ 0.01 cm. The top is bolted with a 10.7 cm long threaded rod at the
center and three equally-spaced 7.1 cm long clamp bars on the edges. Ten microphones
are installed in the top to measure the spatial pressure distribution inside the driven
resonator below onset and observe the behavior of the sound generated above onset. To
monitor the temperatures in the resonator, 5 type-E thermocouples are installed through the
top and another 5 type-E thermocouples are installed in the stack/heat exchanger assembly.
A detailed description of the microphone and thermocouple installation will be presented
later in this chapter.

It is very difficult to move the stack and heat exchanger assembly after it has been put
into the resonator because of the complex wiring and the fragility of the glass components.
Therefore, three holes (3.50 mm diameter) were drilled in the bottom of the resonator to
allow the driver location to be moved relative to the stack. Depending on which mode is to
be excited, the driver was then connected to the desired hole via a 0.4 cm O.D, 3.5cm
long plastic tube. The two unused holes were plugged with thumbtacks that had some

Dow Corning high vacuum grease applied to the tips.

To ensure tight sealing for a high Q, a thin layer of Dow Coming high vacuum grease -

was applied to the surface of the aluminum ring and the center piece before the top was put
on and bolted down. In addition to the bolt in the center and the three clamps mentioned

earlier, 6 extra equally spaced clamp bars are applied around the edge of the top to ensure a

tight seal.
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The instrumentation is shown in Fig. 3.3. The acoustic signal is generated by a 40W,
16 Q external compression driver. The output of a Hewlett Packard 3562A dynamic signal
analyzer was sent through a Techron 5507 power amplifier to the driver. The signal
analyzer was used to determine the frequency response of the resonator. Typically, the
resonator was driven with a random noise source of 1 Vrms source level. The pole-zero
analysis function built into the signal analyzer was then used to determine the Q and the
resonance frequency. To measure the mode shape, the source of the analyzer was changed
to a 1Vrms fixed sinusoidal signal at the resonance frequency found in the previous

measurement.

2. Stack Assembly

The prime mover stack assembly consists of the stack plates and the stack holder. The
first challenge was to select a suitable material for stack. The stack needed to withstand
high temperatures and the differential expansion imposed upon it from the high gradients.
Glass has a low thermal conductivity in comparison to most metals (Johanson Companies,
1996) and is able to withstand higher temperatures than most plastics and other polymers.
An AF-45 thin borosilicate glass slide (made by Precision Glass & Optics) was chosen to
be the material for stack. Some properties of this AF-45 glass are provided in Appendix D.
AF-45 is a modified borosilicate glass with a high content of BaO and Al,O, and features a
low thermal conductivity and a low coefficient of thermal expansion of 45.0 x 107K
(20~300° C). The glass was accurately cut to a size of: 43.65+/-0.05 mm wide and
23.90+/-0.10 mm long and is 0.145+/-0.02 mm thick.

The stack holder (detailed dimensions of which are given in Appendix E) consists of

two horizontal bars (5.28 cm long) connected to two vertical bars (4.85 cm long) as shown
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in Fig. 3.4. Tongue-and-groove joints are machined in the ends of the bars to ensure that
they form a sturdy frame. Sixty-one 0.508 mm deep, 0.203 mm wide, equally-spaced slits
were cut in the inside of each of the two horizontal bars. The center-to-center spacing
between the slits is 0.762 mm. The gaps between the cover glass plates are 0.610 mm.
After the stack holder was assembled, 61 glass slides were then carefully inserted into the
slits. The overall porosity for the prime mover stack assembly, including the frame, is

approximately 0.61.

3. Ambient Heat Exchanger Assembly

The ambient heat exchanger is used to remove heat from the stack and to maintain one
end of the stack close to ambient temperature. The ambient heat exchanger assembly is
constructed as shown in Fig. 3.5 and the detailed dimensions are given in Appendix E.
The heat exchanger is designed to ensure that the temperature difference between the center
and the edge of the heat exchanger is less than one degree C for a 35 W load. The ambient
heat exchanger holder was made in the same way as the stack holder, except that it uses
copper instead of aluminum and has only 10 slits. Also, a central bar was incorporated to
supplement the heat transfer between the heat exchanger and the resonator body. The slits
are 0.635 mm deep, 0.711 mm wide, and equally spaced at 4.064 mm (center to center).
After the holder was made, twenty Alloy-100, 2.30 mm long, 5.10 mm wide, and 0.68
mm thick copper fins were cut and soft-soldered into the slits (10 on either side of the
central bar). The overall porosity for the ambient heat exchanger is 0.62 (including the
frame). The next step was to soft-solder a 5.256 cm X 4.977 cm rectangular copper woven

wire cloth (20 X 20 mesh) on one side of the heat exchanger assembly. The function of
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this wire cloth is to increase the thermal contact between the prime mover stack and the
ambient heat exchanger.

The fin spacing is much larger than would be used in a practical prime mover. The
acoustical properties of an constricted annular resonator are very sensitive to both the
porosity and flow impedance of the constriction. It was decided to make the flow
impedance of the heat exchangers small compared- to-that of the stack. This choice

necessitated using large fin spacing, which reduced the effectiveness of the heat exchanger.

4. Hot Heat Exchanger Assembly

The function of the hot heat exchanger is to supply heat to the stack. It consists of
nickel-chromium wire woven on a non-conducting frame. Since nickel-chromium wire is
used to provide heat to the system, the hot heat exchanger has to provide electrical
insulation to the aluminum resonator. Because of the need for electrical insulation and high
temperature operation, virgin electrical grade PTFE (Teflon) is chosen for the hot heat
exchanger frame. The hot heat exchanger assembly is shown in Fig. 3.6. Drawings of
fabricated parts are provided in Appendix E. The Teflon frame has outer dimensions of
4.978 cm wide, 5.283 cm high, and 0.813 cm thick. The inside of this frame was milled
out to a size of 4.470 cm wide and 4.663 cm high. Seventeen holes are drilled onto the
two vertical sides with an equal spacing of 0.521 cm (8 on one side and 9 on the other
side). Into each of the holes is inserted a 0-80 stainless steel screw. A 92.1 cm, # 28 gage
nickel-chromium wire with a total resistance of 12 € was wound around the 17, 0-80
screws. To avoid direct contact between the nickel-chromium wire and the stack, stainless
steel flat washers are used on the screws for spacers. The ends of the nickel-chromium

wire are wrapped with heat shrinkable flexible PVC tubing to insulate the wire from the
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resonator. The wire is then fed through Teflon tubing which is placed and epoxied in the

bottom wall of the resonator.
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Figure 3.3 Block Diagram of Instrumentation Setup.
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Figure 3.5 The ambient heat exchanger assembly.
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Figure 3.6 The hot heat exchanger assembly.
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5. Stack/Heat Exchanger Assembly

The stack assembly, the ambient heat exchanger assembly, and the hot heat exchanger
assembly were connected with four 5.08 cm long, 00-90 stainless steel threaded rods on
the two horizontal sides (as shown in Fig. 3.7). Teflon spacers were used to ensure proper
spacing between the stack and the heat exchangers. The spacing between the glass plate
and the nickel-chromium wire is approximate 1 mm: - Before the stack/heat exchanger
assembly was placed into the resonator, a piece of thin Teflon tape was wrapped on the
side of the hot heat exchanger to avoid electrical short circuit. A thin layer of silicone heat
sink compound was applied to the side of the ambient heat exchanger frame to supplement
the heat transfer between the ambient heat exchanger and the resonator wall and to seal any

gaps between the frame and the resonator.

Teflon Spacers
Glass Slides—

Threaded Rods

Hex Nut ey Hex Nut

Ambient Heat
Exchanger

Hot Heat
Exchanger

Screws

Hex Nut Hex Nut

[ Threaded Rods

Copper Woven
Wire Cloth

Stack Holder

Figure 3.7 The stack/heat exchanger assembly.
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6. Constriction

Placing another constriction in the resonator provides the possibility for an annular
prime mover to reach onset. Such constrictions were previously used in related work by
Choe (Choe, 1997). The constrictions are made of PVC (Ployvinylchloride) because of its
rigidity and ease of fabrication. The area ratio is defined by the ratio of open area in the
constriction (which is the shaded block in Fig. 3.8) to the cross-sectional area of the

resonator. In Fig. 3.8, S, stands for the open area and S, stands for the open cross-

sectional area of the constriction. The table in Figure 3.8 gives the geometrical parameters

of the constrictions. Constrictions were used having area ratios of 0.7, 0.3 and 0.1 with a
total length of 45°. The 45° length was achieved by stacking two 11.25° constrictions and
one 22.5° constriction together. Vacuum grease was applied to the joining sides of the

individual constrictions to ensure a tight fit.
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0.1 0.640 0.640

Figure 3.8(a) Nominal geometry of the constrictions.
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0 Sq (sz) Sy (sz) area ratio (S1/S,)
18.017 £ 0.005 0.681 + 0.005
2y 53° 26.447
. 7.840 £ 0.005 +0.005 0.296 % 0.005
+0.06
2.591 £0.005 0.098 + 0.005
18.017 £ 0.005 0.681 £ 0.005
° 26.447
11.25 7.840 £ 0.005 +0.005 0.296 + 0.005
+0.05 o
2.591 £0.005 4 0.098 £ 0.005

Figure 3.8(b) Measured geometry of the constrictions.

7. Microphones

In this experiment, 8 Panasonic electret WM-60AT microphones and two ENDEVCO
piezoresistive pressure transducers (Model #8510B-5, Serial # G63T, sensitivity 53.85
mV/psi, and Model #8530C-15, Serial # AGLC2, sensitivity 10.89 mV/psi) are used to
measure the pressure distribution inside the resonator. The two ENDEVCO piezoresistive
pressure transducers are intended to be used to observe the behavior of the sound generated

above onset, in case the Pansonic microphones saturate. The Panasonic microphones are 6

mm in height and 5 mm in diameter, with a sensitivity of 44 dB+ 3 dB re 1 V/Pa. A

Hewlett Packard 6237 Triple Output Power Supply provided 9V DC to each Panasonic

microphone via a custom made microphone selector.
As shown in Fig. 3.9, the 8 Panasonic microphones were spaced by 45 degrees in

pre-drilled holes (0.605 cm in diameter, 0.50 cm deep). They are glued into the holes with
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silicone adhesive. At the bottoms of these holes, 0.82 mm diameter holes were drilled to
expose the microphones to the resonator cavity. The two ENDEVCO piezoresistive
pressure transducers were flush mounted in the cap through spacers with 0.404 c¢m in

diameter threaded holes in the center.

0 degrees 45 degrees

mic #1 mic #8

PANASONIC
Microphones

mic #2 mic #7
270 degrees 90 degrees
mic #3 mic #6
ENDEVCO Pressure
Transducers

180 degrees

Figure 3.9 Installation of 10 microphones on the resonator top.

Prior to the experiment, the 8 Panasonic microphones were calibrated relative to
Microphone # 1. The calibration apparatus is shown in Fig. 3.10. A calibrating chamber
was made from a 19.6 mm long, 21.55 mm ID, and 27.22 mm OD circular PVC pipe. A
Panasonic micro-speaker (Model #EAS-2P106C) was epoxied into one end of the pipe.
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The resonator top was removed and the calibration chamber was positioned over each
microphone. A thin layer of Dow Corning high vacuum grease is applied on the edge of
the chamber to ensure a tight sealing. The frequency responses were then measured for
each microphone over a 300 ~ 500 Hz frequency range using a Hewlett Packard 35665A
Dynamic Signal Analyzer. For the calibration, the signal analyzer was set to swept sine

mode with a integration time of 20 cycles, a settling time of 20 cycles, and a resolution of

200 pts/sweep.

PANASONIC
Micro-Speaker

HP 35665A DYNAMIC
SIGNAL ANALYZER

{SOURCE| [CHANNEL 1] [CHANNEL 2}

Calibrating Chamber

o At Ao

PANASONIC
microphones
Resonator Top
[FROM MICROPHONES]
HP 6237B TRIPLE OUTPUT AS ULP
POWER SUPPLY '@ el 64 @
N %
- ©
- MICROPHONE SELECTOR

Figure 3.10 Calibration of the Panasonic microphones using a small chamber.

Microphone #1 was selected as the reference for the comparison calibration. The
frequency response of microphone #1 when covered by the calibration chamber is shown
in Fig. 3.11. Each microphone’s frequency response was divided by that of microphone

#1 to create a correction factor. A typical curve for the correction factor is shown in Fig.
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3.12. After finishing the calibrations, one more measurement was made on Microphone #1

to ensure the reproducibility of the data. With this particular calibration chamber, a

difference of less than 1% was achieved. The correction factor for the 8 microphones is

usually in the range of 0.75 to 1.75.

When measuring the mode shape, the output from each microphone was divided by
the appropriate correction factor to obtain the corrected amplitude at a particular location and
driving frequency. A custom made microphone switch board selects each microphone to
measure the pressure amplitude at different locations. The microphone output amplitude is

measured using a Standford Research 530 Lock-in amplifier.

O X:400 Hz Y:2.711523
Freq Resp 2:1
4.8 o
T
/"ff
Magnitude /"7 -
T
7
0.8
300 Hz 550 Hz

Figure 3.11 Frequency response of microphone #1 when covered by the small
calibration chamber.

65




O X:400 Hz Y:939.5697 m
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v
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”J—
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300 Hz 500 Hz

Figure 3.12 Plot of correction factor of microphone #2 referenced to microphone #1.
The correction factor at 400 Hz is 0.940.

8. Thermocouple Instrumentation

Ten Omega type E (Model # 5TC-GC-E-30-72) chromel-constantan 0.254 mm
diameter glass braid insulated thermocouples are used to monitor the temperatures of the

stack, the heat exchanger, and inside the resonator. Type E thermocouples were selected
over other types because they provide the greatest sensitivity (in V/°C) and because of their

useful temperature range.

As shown in Fig. 3.13, five thermocouples are used to monitor the temperature of the
stack and the ambient heat exchanger. Two thermocouples each are placed on the hot and
ambient sides of the center glass slide, one in the center and the other at the edge. These

thermocouples are fed through 1.4 mm diameter holes on the copper woven wire cloth of
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the ambient heat exchanger. Another thermocouple (thermocouple # 6 in Fig. 3.13) was
placed on one of the fins of the ambient heat exchanger. The thermocouples were attached
to the glass plate using JB weld adhesive because its high temperature capability. The size
of the glue spots is approximate 0.01 mm?® These glue spots are approximate 0.5 mm
from the edge the glass plate. The wires of the five thermocouples were individually
threaded through 1.4 mm diameter holes in the resonator bottom adjacent to the ambient
heat exchanger. The other five thermocouples were used to sense temperature inside the
resonator, as is shown in Fig. 3.14. They were fed through 1.4 mm diameter holes in the
top and positioned approximately 3 cm inside the resonator. All the holes in the resonator
were then filled with BIPAX TRA-BOND eﬁoxy to ensﬁre a tight seal.

The temperature difference across the stack is adjusted by the voltage supplied to the
hot heat exchanger which is controlled by a Power Design 3650R DC power supply. The
temperatures inside the resonator and in the stack are measured by a Keithley 740 system

scanning thermometer.
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#6

#4

Ambient Heat Exchanger Assembly

Thermocouple

Four holes for thermocouples #2, 3, 4, 5 to pass through

Stack Holder

Ambient Side Hot Side

e

Thermocouple
#5

Thermocouple

Thermocouple
#2

Thermocouple

#3
Center Glass
Slide

Stack Assembly

Figure 3.13 Thermocouple placement on the stack and the ambient heat exchanger.
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#8 (350 degrees) | [#9 (8 degrees) |

#7 (315 degrees)

270 degrees 90 degrees

#11 (180 degrees)|

Resonator Top

\ 180 degrees

e
3cm
T

Figure 3.14 Thermocouple placement in the resonator top.

C. EXPERIMENTAL PROCEDURE

1. Resonator Setup

The stack/heat exchanger assembly is placed at a fixed location relative to the
microphones and thermocouples. For the experiment, three driver positions are used: 45°,
90°, and 180° from the center line of the stack/heat exchanger assembly. Unused driver
holes are plugged with thumbtacks with some vacuum grease applied to the tips. The

resonator top is oriented so that 0° is set at the stack assembly center line. The 0° setting is
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performed by rotation of the top by hand. To determine the error in positioning the top, the
top was positioned five times. It was found that the error by rotation was less than + 1.0°.
So, with the mechanical error  0.25° in drilling the microphone holes, the total error of
microphone positioning is less than + 1.25°. With the stack/heat exchanger assembly
positioned, the proper amount of vacuum grease is applied on the open surface of the
resonator and the top is secured with the clamp bars.

For the measurements with a constriction in the prime mover, a 45° long constriction
is inserted at a location that is 90° from the center line of the stack/heat exchanger assembly

to the center of constriction.

2. Determining Resonator Characteristics

After the resonator was set, the Hewlett Packard 3562A Dynamic Signal Analyzer is
used to characterize the resonator. The swept sine mode of the analyzer provides a sine
wave signal to the system at a given range of frequencies. The frequency response of the
system is used to determine the resonance frequency and Q of several modes of the
resonator. When only one mode is excited, the peak pressure amplitude? frequency, and
quality factor are same as the those given by pole-zero analysis. When two modes are
excited simultaneously, pole-zero analysis is used to extract the resonance frequency and
quality factor. The signal analyzer gives poles in the form a + j b. The resonance is simply
the value of b and the quality factor can be obtained by b/2a. This method has been
explained by Choe (1997). These measurements are performed for (1) annular prime
‘mover without a constriction, and (2) annular prime mover with three different
constrictions (45° long, porosities of 0.7, 0.3 and 0.1) placed at 90° relative to the center

of the stack/heat exchanger assembly. The driver in the first experiment was located at 90°
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(to excite the low frequency mode) or 180° (to excite the high frequency mode) from the
center of the stack assembly. In experiment (2), the driver was placed at 45° from the

center of the stack assembly, between the stack and constriction.

3. Data Collection

Data collection is performed in sets of annular prime mover without and with a
constriction. Before data collection, the output of the Hewlett Packard 6237B Triple output
power supply is set to DC 9V. The output voltage of the Power Design 3650R power
supply is also adjusted to a certain value and the temperature at the hot end of the stack is
allowed to reach steady state (temperature variation < 0.1°C/10 sec). The measurement is
commenced by recording the temperatures measured by the Keithley 740 System Scanning
thermometer. The resonance frequency and quality factor is measured by the Hewlett
Packward 3562A Dynamic Signal Analyzer and the microphone switch board is set to the
microphone that provides the maximum output. The procedure used to acquire the
resonance frequency and quality factor was described in subsection 1. After finding the
resonance frequency, a data run is commenced by changing the source of the Hewlett
Packward 3562A Dynamic Signal Analyzerto a 1 V  fixed sine with a driving frequency
equal to the resonance frequency obtained by previous procedure. The acoustic amplitude
is measured with each microphone. With the driver running, the switch board selects a
particular microphone and the value of amplitude at each position is measured with the
Stanford SR530 Lock-In amplifier. The Lock-In amplifier is set to magnitude-phase
display mode with a time constant of 1 second. At this time, the temperatures are recorded
again and same measurement are repeated again. Before the entire set of experiments is

finished, the final temperatures are recorded. Then, the output voltage of the Power Design
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3650R power supply is changed to adjust the hot end temperature and the same procedure
is followed. All data recorded from the 8 microphones are scaled by the correction factor
obtained from the microphone calibration. The corrected data are then entered in a

computer program to plot the mode shape. This concludes data acquisition of one mode.

72




IV. RESULTS AND DISCUSSION

This chapter shows the comparison between theoretical and measured results for two
series of experiments on the annular prime mover. First, measured temperatures in the
prime mover are presented. Next, results are presented for resonance frequency, 1/Q vs.
AT, and mode shape for the unconstricted annular prime n;ov‘er. Results for the annular
prime mover with a constriction located 90° from the center of the stack/heat exchanger
assembly are then discussed. Finally, an analysis of the potential for onset in a two-stack

annular prime mover is presented.

A. ANNULAR PRIME MOVER

The measured resonance frequencies and Q’s are determined as functions of AT from
pole-zero analysis of the frequency response. The theoretical resonance frequencies and
quality factors are determined from the complex frequency calculated using the measured
temperature distribution in the prime mover as an input. Figures 4.1 and 4.2 show the
measured temperatures as functions of the heater voltage at four locations on the center
plate of the stack for the low mode and high mode of the prime mover.

Figure 4.1 shows that the transverse (center-to-edge) temperature difference on the
ambient side of the stack is at most 5.4 K. However, there is a larger transverse
temperature profile on the hot side. At the highest heater voltage the hot-side, center-to-
edge, temperature difference is 14.8 K. The transverse temperature profile léads to some
uncertainty in the value used for AT. The effects of a transverse AT profile on the

performance of a stack is difficult to access. Therefore, the transverse profiles will be used
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to place error bars on the AT values. Figure 4.2 shows the center-to-edge temperature
difference for the high mode. It is seen that the ambient-side temperatures are essentially
the same as in Fig. 4.1. However the hot side temperatures show a larger center-to-edge
difference than in Fig. 4.1. The difference is attributed to the fact that the resonator top had
to be removed to reposition the driver to switch from exciting the low mode to the high
mode. It is entirely possible, and observed, that while removing and replacing the top the
stack/heat exchanger assembly was disturbed. This could have slightly altered the hot heat
exchanger/stack spacing, resulting in the observed differences.

In the results to follow, all the low mode data were taken, then the driver was
repositioned and all the high mode data taken. Therefore, the temperatures displayed in
Figs. 4.1 and 4.2 should be representative. Typical measured temperature distributions in
the prime mover are shown in Figs. 4.3 (the low mode) and 4.4 (the high mode). The
measured temperature profile in the duct (0 to 0.792 m) and the ambient heat exchanger
temperature are used as inputs into the MATLAB program. The measured hot end stack
temperature is a target.

Figure 4.5 shows the comparison of the measured and computed resonance frequency
for the low mode and high mode. The driver location is 90° from the center of the
stack/heat exchanger assembly for the low frequency mode and 180° for the high frequency
mode. It is seen that there is good agreement between the measured and predicted
resonance frequencies. The biggest differences between the measured and predicted
resonance frequencies are approximately 0.86 % and 1.77 % for the low mode and high
mode, respectively.

Figure 4.6 shows 1/Q of the low and high mode for the annular prime mover verses
the temperature differences across the stack. In general the agreement is good, although

there is a tendency to under predict the 1/Q (or over predict Q), indicating the presence of
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unaccounted losses. For the low mode, 1/Q decreases as the temperature difference is
increased while for the high mode 1/Q increases as the temperature increases. It is evident
from these results that the annular prime mover will not reach onset under readily attainable
conditions. As a matter of fact, an extrapolation of the 1/Q curve for the low mode gives an
onset temperature difference of approximately 1400 K. .

The larger discrepancies of the resonance frequency and 1/Q for the high mode at high
temperature gradient can be caused by a misjudging of the stack temperature. In the
original calculations, the temperatures of the hot (7)) and ambient (7,) sides of the prime
mover stack are calculated by a weighted average of the temperatures at the edge and center

of either side of the stack

2T, T
T;‘ = he + he (41)
3
and
T = Z_Tl_c_;__Tge_ (4.2)

where T, and T,, are the center and edge temperature of the hot side of the stack,
respectively. T, and T, are the center and edge temperature of the ambient side of the stack,
respectively. If the simple average of T, and 7, are used in the computations as opposed to
the weighted average, the resonance frequencies are almost unchanged (difference <
0.03%). This negligible change is to be expected since the stack/heat exchanger assembly
is very short compared to the effective length of the prime mover
(L iack assembty | Loy =0.038).  As a results, the vertical error bars in Fig 4.5 are smaller
than the symbols used to plot the data. However, 1/Q is more sensitive to uncertainties in

T, and T, than is the resonance frequency since all thermoviscous effects are most

important in the stack region. The sensitivity to uncertainties in AT is represented by the

75




vertical error bars shown in Fig. 4.6. There is also an uncertainty in the calculation of
temperature difference across the stack. As shown in Fig. 4.1 and 4.2, the temperatures at
the center of the hot end and ambient end differ from those at the edge. The largest
differences at the hot end are 14.8 K and 33.3 K for the low and high mode, respectively
(heater at 23 V in both cases). The differences of the center and edge temperatures in the
ambient side are approximately 6 K for both cases. This spread is represented by
- horizontal error bars shown in Figs. 4.5 and 4.6. The other possible source of the
discrepancies in resonance frequency and 1/Q at high AT for the high mode is the entire
temperature distribution of the prime mover. As shown in Figs; 4.3 and 4.4, the major
change in temperature profile is concentrated at the region adjacent to the hot heat exchanger
and stack. It is difficult to accurately characterize the entire temperature distribution of the
prime mover using only 10 thermocouples. This is an important difference between the
conventional and annular prime movers. In a conventional prime mover, there is typically a
hot temperature duct and an ambient temperature duct. In an annular prime mover the two
temperatures must merge along the duct.

Figures 4.7(a), (b), and (c) show the mode shapes for the low mode at different
temperature differences.  The stack/heat exchanger assembly is located between
x=0.768m and x =0.792 m, indicated by the dashed line. In this experiment, the
driver is located 90° from the center of the stack which corresponds to a position of
0.183 m. The driving frequencies are the resonance frequencies as computed by the
MATLAB program and the AT’s are calculated using Eqs. 4.1 and 4.2.

Figure 4.7(a) shows the mode shape for the low mode for AT = 0 K. In this case, the
stack/heat exchanger assembly acts simply like a constriction and there is a velocity
antinode near the center of the stack/heat exchanger assembly. The agreement between the

measured and calculated mode shape is good.
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Figures 4.7(b) and (c) show the mode shapes for the low mode at temperature
differences of 80 K and 200 K, respectively. The discrepancy between the measured and
computed mode shape increases as the temperature difference increases. The discrepancy
appears as a shift in mode shape. However, in both cases, the measured and predicted
mode shapes show the same general features. In particular, the standing wave ratio
decreases with increasing AT. Even with this obvious diminishing in the standing wave
ratio, 1/Q only changes by 15% from AT =0 K to AT =220 K.

Figure 4.8(a) show the mode shape for the high mode with AT =0 K. The agreement
between the measured and calculated mode shape is excellent. As one might expect, there
is a pressure antinode near the center of the stack/heat exchanger assembly. Figures 4.8(b)
and (c) show the mode shapes for high mode at temperature difference of 76 K and 192 K,
respectively. The agreement between measured and calculated mode shapes are better than
those of the low mode. In contrast to the low mode shapes, the high mode shapes do not
change appreciably as AT increases. In particular, the standing wave ratio remains high.
This difference between the two modes may be caused by the discontinuity in the acoustic
impedance near the end of the stack. For the low mode, there is a velocity antinode near
the center of the stack which results in a low acoustic impedance. However, the acoustic
impedance of the stack is much larger for the high mode. As a result, as AT increases, the
impedance discontinuity should have more effect on the low mode than the high mode.

The most important result of this section is that the annular prime mover will not reach
onset under easily attainable conditions The reason is that neither mode shape supports
thermoacoustic growth. In other words, the low mode has a velocity antinode centered on
the stack/heat exchanger assembly whereas the high mode has a pressure antinode centered

on the stack/heat exchanger assembly. It was also found that the standing wave ratio of the
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low mode diminishes as AT increases. However, this alteration in mode shape does not

correlate with increased attenuation in the prime mover.
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Temperature of the prime mover stack for low mode
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Figure 4.1 Temperature of the prime mover stack vs. the heater voltage (low

mode).
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Temperature of the prime mover stack for high mode
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Figure 4.2 Temperature of the prime mover stack vs. the heater voltage (high
mode).
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Temperature distribution of the low mode of the annular prime mover

300 T T T 1 T T 1
O HeateratOV :
0 + Heaterat8V | : f
250+ X Heaterat19V | @ -
X Heaterat23V :
---- Stack region :
200

Temperature (C)
o
(=}

100 4
. S—_
0 1 1 1 1 | 1 |
0 041 0.2 0.3 0.4 0.5 0.6 0.7

Position (m)

Figure 4.3 The measured temperature distribution of the prime mover (low
mode, heater at 23 V). The stack is located to the right of the dotted line.
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Temperature distribution of the high mode the annular prime mover

300 T T T T T T 1
3 O HeateratoVv :
+ Heaterat9V S
250F X Heaterat19V | : .
X Heaterat23V :
---- Stack region
*
200
S
[0}
2
S 150}
(]
o
£
(]
|_
100} 4
50}
LL\(’)\$
O 1 ] | 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Position (m)

Figure 4.4 The measured temperature distribution of the prime mover (high
mode, heater at 23 V). The stack is located to the right of the dotted line.
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Resonance frequency vs DeltaT for the annular prime mover
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Figure 4.5 Comparison of calculated and measured resonance frequencies vs. AT

for the annular prime mover.
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1/Q vs DeltaT for the annular prime mover
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Figure 4.6 Comparison of calculated and measured 1/Q vs. AT for the annular

prime mover.
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Low mode with dT = 0 Kelvin ; freq = 423.1+5.735i
1 T T L] 1

o
()

Normalized pressure
=) =)
ES o

o
(X

o
[©)

—— Matlab program
O Measured data
— — stack region

0.1

1
0 0.1 0.2 0.3 0.4 0.5
Position, m

0 - i 1

Figure 4.7(a) Mode shape for the low mode of the annular prime mover when the

driver is located 90° from the stack and AT =0 K.
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Low mode with dT = 79.63 Kelvin ; freq = 427.4+5.722i
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Figure 4.7(b) Mode shape for the low mode of the annular prime mover when

the driver is located 90° from the stack and AT = 80 K.
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Low mode with dT = 199.6 Kelvin ; freq = 438.3+5.442i
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Figure 4.7(c) Mode shape for the low mode of the annular prime mover when the

driver is located 90° from the stack and AT =200 K.
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High mode with dT = 0 Kelvin ; freq = 438.3+2.099i
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Figure 4.8(a) Mode shape for the high mode of the annular prime mover when
the driver is located 180° from the stack and AT =0 K.
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Normalized pressure

High mode with dT = 75.73 Kelvin ; freq = 442.7+2.245j
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Figure 4.8(b) Mode shape for the high mode of the annular prime mover when
the driver is located 180° from the stack and AT =76 K.
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High mode with dT = 192.1 Kelvin ; freq = 453.5+2.962i
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Figure 4.8(c) Mode shape for the high mode of the annular prime mover when

the driver is located 180° from the stack and AT = 192 K.
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B. CONSTRICTED ANNULAR PRIME MOVER

In this section, results for the annular prime mover with a constriction located 90°
from the center of the stack/heat exchanger assembly are presented. The constriction is 45°
long and three different porosities 0.7, 0.3, and 0.1 are used. First, the comparisons of the
measured and calculated resonance frequencies of the constricted prime mover are
presented. Next, the comparisons of the measured and calculated Q of the constricted
prime mover are discussed. The end corrections are included in the calculations using the
two methods discussed in Chapter II. This section concludes with the comparisons of the
measured and computed mode shapes for the constricted prime mover.

As mentioned earlier, the measured resonance frequencies and Q’s are determined
from pole-zero analysis of the frequency response. In the measurement, the driver is
located 45° from the center of the stack assembly and the constriction. The theoretical
resonance frequencies and Q’s were calculated for four different cases, represented by A,
B,C,and D. Al the results are listed in Tables 4.1 and 4.2. In these tables, Column A
represents the calculated results without any end corrections. Columns B and C represent
the results with end corrections for the constriction using the conformal transformation
method and higher order mode method, respectively. It is worth pointing out that there are
no appreciable differences between of the results for 1/Q calculated from the conformal
mapping transformation and the higher order mode method when the end corrections in the
constriction are included. Column D gives the results for the case of applying end
corrections to both the constriction and the stack using the higher order mode method. The
end corrections in the prime mover stack are approximated by applying the end corrections
to one slit and summing the impedance of the slits in parallel. The temperature differences

were determined by Egs. (4.1) and (4.2). Table 4.1 lists the calculated and measured
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resonance frequencies for the low and high modes for the various constrictions. Table 4.2
lists the calculated and measured Q for the low and high modes for the various
constrictions. In these tables, Rs represents the area ratio of the constriction, i.e., the
porosity.

It is seen that the inclusion of end corrections has significant effects on the predictions
for the low mode. For example, in the case of Rs = 0.1, the averaged differences
between the calculated and measured resonance frequencies are 1.94 % (no end
corrections), 0.67% (end corrections using conformal transformation method), and 0.39%
(end corrections using higher order mode method). On the contrary, including end
corrections for the constriction has little effect on the predictions for the high mode. This
point is evident from Figs. 4.9 and 4.10, where it is seen that inclusion of end corrections
in the constriction is important for the low mode only. However, inclusions of the end
corrections in both the constriction and stack has more effect on the high mode than on the
low mode.

The point to be taken from these figures is that the program does a good job of
predicting the resonance frequencies, even in the absence of including end corrections. We
have confidence in the end corrections applied to the constriction. This confidence is the
result of preliminary work by Choe (Choe, 1997). Application of end corrections to the
stack is only intended to be approximate, to indicate that they should have an effect. The
contribution of this work is to point out the necessity of including end corrections. A
detailed analysis of stack end corrections is an area for future work.

Figure 4.11 shows the comparisons of the calculated and measured 1/Q of the low
mode for the unconstricted and constricted prime mover with various porosities. In this set
of experiments, when the constriction porosity is 0.1, the prime mover reaches onset at a

temperature difference of 260 K. The horizontal error bar in Fig. 4.11 indicates the
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uncertainty in determining the onset temperature from the measure temperature distribution
as discussed previously. In all cases, the calculated results under estimate 1/Q. Therefore,
the calculated results show a significantly lower onset value of AT in the case of Rs = 0.1.
The reason for this discrepancy is not fully understood. Nonetheless, both the measured
and calculated 1/Q indicate the same trends. First, the relative values for 1/Q are consistent.
Also, both the predicted and measured results for the constricted prime mover intersect
within a narrow range of AT. The predicted values intersect at AT = 100K and the
measured data intersect at AT = 175 K. The 1/Q curve for Rs = 0.1 begins with the
highest value of the three constricted cases and ends with the lowest value after the
intersection at AT =100 K. In contrast, 1/Q for Rs = 0.7 begins with the lowest value
and ends with the largest value at higher AT. 1/Q for Rs = 0.3 remains in between 1/Q
for the other two porosities.

The conclusion to be drawn from Fig. 4.11 is that it is predicted that a constricted
annular prime mover will reach onset, and it does. Although, the agreement between the
measured and calculated results are only fair, there is very good qualitative agreement.
This indicates that although there are still some details to be investigated, the general
behavior is understood.

Figure 4.12 shows the comparisons between the calculated and measured 1/Q for the
high mode for the unconstricted and constricted prime mover. It is seen that the
temperature difference has less effect on 1/Q for the high mode than for the low mode.
Over the temperature span from AT =0 K to AT = 200 K, the change in 1/Q is less than
30 % in all cases. The same comments about the general qualitative agreement apply to the
“high mode results as they do to the low mode results.

The question to be addressed now is why does a constricted annular prime mover

reach onset. The answer lies in the effects that a constriction has on mode shapes.

93




Figures 4.13(a) and (b) show the comparison of the measured and computed mode
shapes of the low mode for Rs = 0.1. In this case the constriction is much longer than the
stack assembly (L, icion Lok = 3-33) and the porosity of the constriction is much smaller
than that of the stack assembly. As a result, the mode shape is dominated by the
constriction. There is a pressure node near the center of the constriction and a pressure
antinode between the constriction and the stack assembly nearest (but not at) the hot end of
the stack. End corrections for the constriction are included using the higher order mode
method. Figure 4.13(a) is for AT = 0 K and Fig. 4.13(b) is for AT =288 K. The
frequencies are the calculated values. It is observed that there is a good agreement between
the measured and predicted mode shape at AT =0 K. This mode shape is favorable to
thermoacoustic growth. The agreement in mode shape worsens at AT =288 K. It should
be noticed that the imaginary part of the calculated resonance frequency is negative, which
suggests the onset has been reached.

Figures 4.14(a) and (b) show the comparison of the measured and computed mode
shapes of the high mode for Rs =0.1. The agreement between the measured and
calculated mode shape is good. As one would expect, there is a pressure antinode near the
center of the constriction.

One important common feature of Figs. 4.13 and 4.14 is that the mode shapes are
essentially determined by the constriction and are independent of the temperature
difference. This is a key to making the annular prime mover reach onset.

The main conclusion from this section is that to build a functional annular prime
mover, the relative locations of the constriction and the stack, and their relative porosities
are the crucial factors. This is equivalent to incorporating some type of dominating

boundary conditions into the prime mover to alter the mode shapes.
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Rs=0.1 Low mode A B C D
DeltaT (K) f, cal (Hz) f, cal (Hz) f, cal (Hz) f,cal(Hz) | f, mea(Hz)
0 300.9 297.1 296.2 295.6 295.6
41.1 302.3 298.6 297.6 296.9 296.9
70.8 303.6 299.9 298.9 298.3 298.1
103.9 305.1 301.2 300.3 299.7 299.2
175.4 309.0 304.9 304.2 303.6 302.6
228.2 312.3 308 307.4 306.8 305.1
Rs=0.1 High mode A B C D
DeltaT (K) f, cal (Hz) f, cal (Hz) f, cal (Hz) f, cal (Hz) f, mea (Hz)
0 474.2 474 474.0 468.8 470.5
41.1 476.6 476.5 476.4 471.6 474
70.8 478.8 478.7 478.6 4739 476.9
103.9 481.1 481 481.0 476.4 479.6
1754 487.7 487.6 487.6 483.2 486.7
228.2 493.3 493.1 493.1 488.9 491.8
Rs=0.3 Low mode A B C D
DeltaT (K) f, cal (Hz) f, cal (Hz) f, cal (Hz) f,cal (Hz) | f, mea (Hz)
0 368.4 363 361.7 361.3 362
42.1 368.6 363.2 361.9 361.6 361.6
71.7 369.3 363.9 362.6 362.3 361.9
105.6 3704 364.9 363.6 363.4 362.5
175.4 373.4 367.7 366.6 366.3 364.4
226.4 376.8 370.9 369.9 369.6 366.7
Rs=0.3 High mode A B C D
DeltaT (K) f, cal (Hz) f, cal (Hz) f, cal (Hz) f,cal (Hz) | f mea (Hz)
0 467.3 467 466.9 461.9 464.2
42.1 468.1 467.8 467.7 463.1 465.8
71.7 469.2 468.8 468.7 464.2 467.2
105.6 470.8 470.5 470.4 466 469.3
175.4 475.3 474.9 474.9 470.7 473.7
226.4 480.0 479.7 479.6 475.5 478
Rs=0.7 Low mode A B C D
DeltaT (K) f, cal (Hz) f, cal (Hz) f, cal (Hz) f, cal (Hz) f, mea (Hz)
0 419.3 418.4 417.9 417.8 417.8
46.8 419.9 419 418.5 4184 418.2
77.1 421.9 121 420.5 4204 418.8
112.2 423.5 422.5 422.1 421.9 419.9
179.2 426.9 425.9 425.4 425.2 422
231 433.9 429.6 429.2 428.8 424.5
Rs=0.7 High mode A B C D
DeltaT (K) f, cal (Hz) f, cal (Hz) f, cal (Hz) f,cal (Hz) | f, mea(Hz)
0 438.9 438.8 438.7 434.2 436.2
46.8 442.5 442 .4 442.3 438.1 440.2
77.1 445.2 445.1 445.0 440.9 4422
112.2 448.2 448.1 448.0 444 444.4
179.2 454.2 454.1 454.0 450.2 448.5
231 460.2 460 460.0 456.3 452

Table 4.1 Comparisons of the calculated and measured resonance frequencies for the

constricted annular prime mover. Case A: without end corrections; Cases B, C, D:

End corrections with different methods.
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Rs=0.1 Low mode A B C D
DeltaT (K) Qlow, cal | Qlow, cal | Qlow, cal | Qlow, cal | Qlow, mea
0 50.4 45.5 45.4 38.2 43.3
41.1 68.8 60.8 60.9 48.9 51.5
70.8 92.3 80.2 80.2 61.3 60.5
103.9 148.3 122.6 123.4 84.8 73.8
175.4 -519.6 -1089 -1029 421 127
228.2 -124.3 -123.3 -131.9 -225 239.5
Rs=0.1 High mode A B C D
DeltaT (K) Qlow, cal | Qlow, cal | Qlow, cal | Qlow, cal Qhigh, mea
0 364 36.4 36.4 24.3 . 32.6
41.1 379 37.9 37.9 24.9 33.7
70.8 39.2 39.1 39.1 254 34.2
103.9 40.8 40.8 40.8 26 35.9
175.4 45.7 45.6 45.7 27.8 37.9
228.2 51.3 51.2 51.2 29.6 41.3
Rs=0.3 Low mode A B C D
DeltaT (K) Qlow, cal | Qlow, cal | Qlow, cal | Qlow, cal Qlow, mea
0 74.9 69.6 69.1 62.7 65.1
42.1 90.2 84.8 83.7 75.6 73.8
71.7 105.5 98.6 98.1 87.7 81.1
105.6 129.2 122 123 107 90.9
175.4 235.2 234 248 196 121.7
226.4 5144 590 690 435 157
Rs=0.3 High mode A B C D
DeltaT (K) Qhigh, cal | Qhigh, cal | Qhigh, cal| Qhigh, cal Qhigh, mea
0 35.7 357 35.7 24 32.8
42.1 36.9 36.9 36.9 24.5 33.7
71.7 37.9 37.8 37.8 24.9 34.3
105.6 39.2 39.1 39.1 25.3 35.1
175.4 42.6 424 424 26.6 37.4
226.4 45.8 45.8 45.8 27.8 38.8
Rs=0.7 Low mode A B C D
DeltaT (K) Qlow, cal | Qlow, cal | Qlow, cal | Qlow,cal | Qlow, mea
0 98.8 97.3 97.2 94.2 85.4
46.8 108.2 106.8 106.6 103.4 95
77.1 118.4 116.8 116.7 114.4 98.2
112.2 136.7 134.5 134.5 133.6 103
179.2 216.3 207 205.8 210 114
231 312.5 407.1 398.2 444.3 119.1
Rs=0.7 High mode A B C D
DeltaT (K) Qhigh, cal | Qhigh, cal | Qhigh, cal | Qhigh, cal Qhigh, mea
0 36.6 36.6 36.6 24.7 35.2
46.8 36.5 36.5 36.5 24.7 36.4
77.1 36.1 36.1 36.2 24.3 36.3
112.2 357 35.7 35.8 24 35.2
179.2 34.5 34.8 349 23.4 36.4
231 33.7 34 34.1 22.8 37.2

Table 4.2 Comparisons of the calculated and measured Q for the constricted
annular prime mover. Case A: without end corrections; Cases B, C, D: End
corrections with different methods.
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Low mode, Resonance frequency vs. DeltaT , Rs = 0.1
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Figure 4.9 Comparisons of the measured and calculated resonance frequencies of
the low mode for the constricted prime mover with a porosity of 0.1. Method A
is the conformal mapping transformation and Method B is the higher order mode.
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High mode, Resonance frequency vs. DeltaT, Rs = 0.1
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Figure 4.10 Comparisohs of the measured and calculated resonance frequencies
of the high mode for the constricted prime mover with a porosity of 0.1. Method

A is the conformal mapping transformation and Method B is the higher order
mode.
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1/Q for the low mode of the annular prime mover
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Figure 4.11 Comparisons of the measured and predicted 1/Q of the low mode for
the unconstricted and constricted prime mover. Symbol o represents the

measured 1/Q of unconstricted prime mover. Symbols *, +, and X represent the

measured 1/Q for the constricted prime mover with porosities of 0:1, 0.3, and
0.7, respectively. The lines represent the predicted values. No end corrections
are included in the predicted values for the unconstricted prime mover.
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1/Q for the high mode of the annular prime mover
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Figure 4.12 Comparisons of the measured and predicted 1/Q of the high mode
for the unconstricted and constricted prime mover. Symbol o represents the

measured 1/Q of unconstricted prime mover. Symbols *, +, and X represent the

measured 1/Q for the constricted prime mover with porosities of 0.1, 0.3, and
0.7, respectively. The lines represent the predicted values. No end corrections
are included in the predicted values for the unconstricted prime mover.
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Low mode with end effect 2 ; dT = 0 Kelvin ; freq = 296.2+3.259i ; Rs = 0.1

T N T T T T T T T

— Matlab program
O Measured data

: : — — Stack region
1 : S Constriction

Normalized pressure
o o
o o)

o
~

0.2

0 1 1 1 1 H 1 1

0 0.1 0.2 0.3 04 0.5 0.6 0.7
Position, m

Figure 4.13(a) Mode shape of the low mode of the constricted prime mover
(Rs =0.1) when the driver is located 45° from the stack and AT =0 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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Low mode with end corrections ; dT = 228.2 Kelvin ; freq = 307.4-1.165i ; Rs = 0.1
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Figure 4.13(b) Mode shape of the low mode of the constricted prime mover
(Rs =0.1) when the driver is located 45° from the stack and AT = 228 K.

The calculated results are based on the higher order mode method. The frequency
is the calculated value.
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High mode with end effect ; dT = 0 Kelvin ; freq = 474+6.514i ; Rs = 0.1
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Figure 4.14(a) Mode shape of the high mode of the constricted prime mover
(Rs =0.1) when the driver is located 45° from the stack and AT =0 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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High mode with end effect 2 ; dT = 228.2 Kelvin ; freq = 493.1+4.817i; Rs = 0.1
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Figure 4.14(b) Mode shape of the high mode of the constricted prime mover
(Rs =0.1) when the driver is located 45° from the stack and AT = 228 K.

The calculated results are based on the higher order mode method. The frequency
is the calculated value.
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C. TWO STACK ANNULAR PRIME MOVER

The knowledge gained from the last two sections leads to the design of a symmetric
two stack annular prime mover in which the constriction in the last section is replaced by a
stack assembly. This proposed design of the annular prime mover, as shown in Fig. 4.15,
has two identical stack/heat exchanger assemblies. The two stack assemblies are placed
such that the hot heat exchangers face each other.

- The MATLAB program was modified to predict the performance of this two stack
annular prime mover, by adding one more guess of the time-averaged energy flux H 2
along the second stack to match the temperature of the hot heat exchanger. Two different
cases are studied here. In case 1 the duct between the two heat exchangers is held at
ambient temperature T, = 293 K while in case 2 it is held at the desired temperature of the
hot heat exchanger 7;. The reason for studying case 1 is that the current apparatus can be
easily modified to conduct the experiment. However, because of the temperature
discontinuity near the junction of the duct and hot heat exchanger, it is difficult to model
this case theoretically and computationally. It is known that the temperature discontinuity
in the duct will also create a small discontinuity in the work flow (Rott, 1969). On the
contrary, although the theoretical analysis of case 2 is simpler than case 1, investigating it
requires a new apparatus.

Figure 4.16 shows the calculated resonance frequencies of the two-stack prime mover
for the two cases. In case 1, it is seen that the resonance frequencies for the high mode
increase approximately linearly with temperature difference. However, AT has little effect

“on the resonance frequencies of the low mode in case 1. The resonance frequencies for
both the low and high mode in case 2 increase approximately linearly with temperature

difference. Because the duct between the two hot heat exchangers is held at T,, the
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increase in resonance frequency is bigger than that in case 1. It should be pointed out that
in case 1 at very low temperature difference (AT < 50 K), the resonance frequencies of
the low mode and high mode are very nearly equal. The MATLAB program always
converges to only one mode. For example, at AT = 0 K, the program always converges
to the high mode, while at AT =25 K it always converges to the low mode. As AT
increases, the modes are well separated and no such condition was observed. This
condition is not present in case 2. It was always possible to distinguish between the low
mode and high mode. It should also be pointed out that for case 1 at AT = 0 K, the
resonance frequency for the high mode is 424.6 Hz and is 424.0 Hz for the low mode.
The results indicate the possibility of mode level repulsion (Pippard, 1985 and 1989;
Laraza and Denardo 1997).

Figure 4.17 shows the calculated 1/Q of the low mode and high mode for the two-
stack prime mover for the two cases. It is evident that the high mode reaches onset at
AT =190 K for case 1. The onset temperature difference for the high mode in case 2 is
approximately 350 K. An interesting feature different from the 1/Q for the constricted
prime mover is the linearly increase and decrease in 1/Q for the low mode and high mode,
respectively. Similar dependence has been observed for a rigid-rigid prime mover (Lin,
1989; Atchley, et al., 1992).

Frequency splitting in the two-stack annular prime mover offers the possibility that the
harmonics of the fundamental frequency and the overtones of the resonator will not
coincide, thus detuning the system. This means that if high amplitudes are achieved above
onset, waveform distortion and shocking should not be a problem (Coppens, 1971;
Atchley and Hofler, 1990; Atchley et. al. 1993).

Figures 4.18 to 4.21 show the calculated mode shapes for the low mode and high

mode for the two cases. As one would expect from symmetry, there is a pressure antinode
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between the two stacks for the high mode and a pressure node between the two stack
assembly for the low mode. It is evident that only the high modes in both cases support

thermoacoustic growth, as is confirmed by Fig. 4.17.

Hot Heat
Exchanger (Tp)

Prime Mover

Stack Prime Mover

Stack

Ambient Heat
Exchanger (Ta)

Ambient Heat
Exchanger (Ta)

Figure 4.15 The two-stack annular thermoacoustic prime mover.
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Calculated resonance frequency vs. dT for the two stack annular prime mover
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Figure 4.16 The calculated resonance frequencies for the two stack annular prime
mover. Case 1: The duct between the two hot heat exchangers is held at T,
Case 2: The duct between the two hot heat exchangers is held at T,.
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Calculated 1/Q vs. dT for the two stack annular prime mover
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Figure 4.17 The calculated 1/Q for the low mode and high mode for the two

stack annular prime mover. Case 1:

The duct between the two hot heat

exchangers is held at T,. Case 2: The duct between the two hot heat exchangers

is held at T,.
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Mode shape for of the two stack prime mover, dT = 200K; freq = 426.1+14.74i
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Figure 4.18 The calculated mode shape of the low mode of the two stack annular
prime mover at AT =200 K. Case 1: The duct between the two hot heat
exchangers is held at T, = 293 K.
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Mode shape for of the two stack prime mover, dT = 199.2K; freq = 433.5-0.614i
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Figure 4.19 The calculated mode shape of the high mode of the two stack annular
prime mover at AT =200 K. Case 1: The duct between the two hot heat
exchangers is held at T, = 293 K.
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Normalized pressure

Mode shape for of the two stack prime mover, dT = 200K; freq = 535.9+18.2i
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Figure 4.20 The calculated mode shape of the low mode of the two stack annular
prime mover at AT =200 K. Case 2: The duct between the two hot heat
exchangers is held at T, = 493 K.
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Mode shape for of the two stack prime mover, dT = 199.9K; freq = 540.7+3.941i
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Figure 4.21 The calculated mode shape of the high mode of the two stack annular
prime mover at AT =200 K. Case 2: The duct between the two hot heat
exchangers is held at T, = 493 K.
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V. SUMMARY AND CONCLUSION

The objective of this dissertation is to investigate a thermoacoustic prime mover having
periodic boundary conditions both experimentally and theoretically. The experimental
approach has been to design, build, and test an annular thermoacoustic prime mover. The
resonance frequencies, quality factors, and the mode shapes of the prime mover are
measured as functions of the temperature difference across the prime mover stack. The
experimental resonance frequencies and Q’s are determined from pole-zero analysis of the

measured frequency response.

An important aspect of this dissertation is the computational analysis of a
thermoacoustic device with periodic boundary conditions. Two approaches were taken.
First an existing program, DeltaE, was applied to this novel geometry. It was found that
DeltaFE can be applied to the problem, but has some disadvantages. It is difficult to extract
QO’s below onset and awkward to extract mode shapes. It is also difficult to include

temperature gradients in ducts.

Because of these problems, a new program was developed. It uses the same basic
approach as DeltaE, but overcomes the disadvantages. The complex eigenfrequency is

used to extract resonance frequencies and Q'’s.

The results of this dissertation indicate that under all but perhaps extreme conditions an
annular prime mover will not reach onset. The reason is well understood. The eigenmodes
of a single-stack annular prime mover do not support thermoacoustic growth. This finding
lead to the investigation of a constricted annular prime mover. The idea is that the

constriction could impose dominating boundary conditions on the prime mover thus
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altering the eigenmodes. It was shown that decreasing the porosity of the constriction
forced the prime mover into onset. The porosity and location of the constriction is used to

adjust the eigenmodes of the system so that thermoacoustic growth is supported.

Another way to produce eigenmodes that support thermoacoustic growth is to
introduce a symmetry into the system which shifts the nodes and antinodes of the modes
off the stacks, such that for one of the modes a pressure antinode is near the hot end of the
stacks. It is predicted that a two-stack annular prime mover will reach onset. This design

is an area for future research.

Another area for future study is end correction for stacks. It was shown in this
dissertation that inclusion of end corrections does affect the predicted resonance frequencies

and Q’s. Determining the proper end corrections for realistic stack geometries is likely to

be a nontrivial project.
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APPENDIX A.1 THE DELTAE INPUT FILE FOR THE LOW FREQUENCY
MODE OF THE ANNULAR THERMOACOUSTIC PRIME MOVER

TITLE Annular resonator (file : to2dTflowC.in)

ICreated @23:18:35 02-MAY-97 with DeltaE Vers. 3.0b1 for the Power Macintosh

Gas type
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! 0

BEGIN  Initial

1.0130E+05 aMeanP Pa 16.63 Alpl@0 G(0d) P

427.0 bFreq. Hz -43.90 B Ph(p)0 G(Qe) P

293.0 cT-beg K 6.7062E-04 CIUI@0 G(0f) P

16.63 dlpl@0 Pa G 38.50 D Ph(U)0 G(0g) P

-43.90 e Ph(p)0 deg G -1.8309E-03 E Heatln G(27¢) P

6.7062E-04 fIUI@0 m"3/s G

38.50 gPh(U)0 deg G

air Gas type

ideal Solid type

! 1

SOFTEND 1

0.0000 a Re(Z) ®) 16.63 Alpl Pa

0.0000 b Im(Z) (ty -43.90 B Ph(p) deg
6.7062E-04 CIU m73/s
38.50 D Ph(U) deg
7.3673E-04 EHdot W
7.3673E-04 FWork W
2.0847E-02 G Re(2)

sameas 0 Gas type -0.1564 H Im(Z)

ideal Solid type 293.0 IT K

! 2

ISODUCT Duct

2.6300E-03 aArea m"2 42.05 A lpl Pa

0.2050 bPerim m -48.73 B Ph(p) deg

3.1788E-02 cLength m 6.2404E-04 CIUl m"3/s
38.20 D Ph(U) deg

sameas 0 7.0088E-04 EHdot W




ideal Solid type 7.0088E-04 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m"2 64.95 A lpl Pa

0.2050 bPerim m -49.96 B Ph(p) deg

3.1788E-02 cLength m 5.3880E-04 CIUI m"3/s
37.86 D Ph(U) deg

sameas 0 Gas type 6.6858E-04 EHdot W

ideal Solid type 6.6858E-04 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m™ 83.85 Alpl Pa

0.2050 bPerim m -50.55 . B Ph(p) deg

3.1788E-02 cLength m 4.2045E-04 CIUl m73/s
37.36 D Ph(U) deg

sameas 0 Gas type 6.4101E-04 EHdot W

ideal Solid type 6.4101E-04 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m™2 97.57 A lpl Pa

0.2050 bPerim m -50.93 B Ph(p) deg

3.1788E-02 cLength m 2.7606E-04 CIUI m*3/s
36.44 D Ph(U) deg

sameas 0 Gas type 6.1820E-04 EHdot W

ideal Solid type 6.1820E-04 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m™2 105.3 A lpl Pa

0.2050 bPerim m -51.21 B Ph(p) deg

3.1788E-02 cLength m 1.1484E-04 CIUl m"3/s

33.10 D Ph(U) deg

sameas 0 Gas type 5.9903E-04 EHdot W

ideal  Solid type 5.9903E-04 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m™2 106.4 Alpl Pa
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0.2050 bPerim m -51.45 B Ph(p) deg
3.1788E-02 cLength m 5.5371E-05 CIiU0I m"3/s
-130.1 D Ph(U) deg

sameas 0 Gas type 5.8148E-04 EHdot W

ideal Solid type 5.8148E-04 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m"2 101.0 A lpl Pa

0.2050 bPerim m -51.67 B Ph(p) deg

3.1788E-02 cLength m 2.1977E-04 CIUl m"3/s
-138.8 D Ph(U) deg

sameas 0 Gas type 5.6316E-04 EHdot W

ideal Solid type 5.6316E-04 FWork W

!

ISODUCT Duct 7

2.6300E-03 aArea m"2 89.39 Alpl Pa

0.2050 bPerim m -51.92 B Ph(p) deg

3.1788E-02 cLength m 3.7131E-04 CIUl m"3/s
-140.0 D Ph(U) deg

sameas 0 Gas type 5.4183E-04 EHdot W

ideal Solid type 54183E-04 FWork W

!

ISODUCT Duct 8

2.6300E-03 aArea m"2 72.22 Alpl Pa

0.2050 bPerim m -52.23 B Ph(p) deg

3.1788E-02 cLength m 4.9997E-04 CIUl m"3/s
-140.6 D Ph(U) deg

sameas 0 Gas type 5.1603E-04 EHdot W

ideal Solid type 5.1603E-04 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m"2 50.59 Alpl Pa

0.2050 bPerim m -52.75 B Ph(p) deg

3.1788E-02 cLength m 59773E-04 CIUI m3/s
-140.9 D Ph(U) deg

sameas 0 Gas type 4.8535E-04 EHdot W
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ideal Solid type 4.8535E-04 FWork W
! 12
ISODUCT Duct
2.6300E-03 aArea m"2 25.84 A lpl Pa
0.2050 bPerim m -54.17 B Ph(p) deg
3.1788E-02 cLength m 6.5855E-04 CIUl m"3/s
-141.1 D Ph(U) deg
sameas 0 Gas type 45059E-04 EHdot W
ideal Solid type 4.5059E-04 FWork W
! 13
ISODUCT Duct
2.6300E-03 aArea m™2 1.340 A lpl Pa
0.2050 bPerim m -165.9 B Ph(p) deg
3.1788E-02 cLength m 6.7865E-04 CIUI m3/s
-141.3 DPh(U) deg
sameas 0 Gas type 4.1353E-04 EHdot W
ideal Solid type 4.1353E-04 FWotk W
! 14
ISODUCT Duct
2.6300E-03 aArea m™2 26.91 Alpl Pa
0.2050 bPerim m 131.0 B Ph(p) deg
3.1788E-02 cLength m 6.5679E-04 CIUl m"3/s
-141.5 DPh(U) deg
sameas 0 Gas type 3.7652E-04 EHdot W
ideal Solid type 3.7652E-04 FWork W
! 15
ISODUCT Duct
2.6300E-03 aArea m"™2 51.56 A lpl Pa
0.2050 bPerim m 129.7 B Ph(p) deg
3.1788E-02 cLength m 5.9432E-04 CIUI mr3/s
-141.6 D Ph(U) deg
sameas 0 Gas type 3.4190E-04 EHdot W
‘ideal Solid type 34190E-04 FWork W
! 16
ISODUCT Duct
2.6300E-03 aArea m"2 73.03 A lpl Pa
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0.2050 bPerim m 129.2 B Ph(p) deg

3.1788E-02 cLength m 49511E-04 CIU m"3/s
-141.8 D Ph(U) deg

sameas 0 Gas type 3.1142E-04 EHdot W

ideal Solid type 3.1142E-04 FWork W

! 17

ISODUCT Duct

2.6300E-03 aArea m"2 89.99 A lpl Pa

0.2050 bPerim m 128.9 B Ph(p) deg

3.1788E-02 cLength m 3.6528E-04 CIlU m"3/s
-142.1 D Ph(U) deg

sameas 0 Gas type 2.8583E-04 EHdot W

ideal Solid type 2.8583E-04 FWork W

! 18

ISODUCT Duct

’ 2.6300E-03 aArea m"2 101.4 A lpl Pa

0.2050 bPerim m 128.8 B Ph(p) deg

3.1788E-02 cLength m 2.1289E-04 CIUI m"3/s
-142.6 D Ph(U) deg

sameas 0 Gas type 2.6468E-04 EHdot W

ideal Solid type 2.6468E-04 FWork W

! 19

ISODUCT Duct

2.6300E-03 aArea m"2 106.5 A Ipl Pa

0.2050 bPerim m 128.7 B Ph(p) deg

3.1788E-02 cLength m 4.7479E-05 CIUI  m"3/s
-146.9 D Ph(U) deg

sameas 0 Gas type 2.4644E-04 EHdot W

ideal Solid type 2.4644E-04 FWork W

! 20

VDUCER  Driver

1.0000E-09  a Re(Ze) ohms 106.5 A lpl Pa P

0.0000 b Im(Ze) 128.7 B Ph(p) deg

1.0000E+04 ¢ Re(T1) V-s/m”3 14217E-04 CIUl m"3/s

0.0000 d Im(T1) V-s/m"3 -169.5 D Ph(U) deg

-1.0000E+04 e Re(T2) Pa/A 3.5727E-03 EHdot W
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0.0000 fIm(T2) Pa/A 3.5727E-03 FWork W

1.0000E-09 g Re(Zm) Pa-s/m”3 3.3263E-03 GWorkln W

1.0000E-09  h Im(Zm) Pa-s/m"3 1.000 HVolts V

1.000 iAplVol V 1.0651E-02 IAmps V
-51.35 J Ph(Ze) deg

sameas 0 Gas type 1.0000E-04 K IUxI m”3/s

ideal Solid type -180.0 L Ph(-Ux deg

! 21

ISODUCT Duct

2.6300E-03 aArea m"2 108.1 A lpl Pa

0.2050 bPerim m 127.3 B Ph(p) deg

3.1788E-02 cLength m 79112E-05 CIU  m*3/s
93.49 D Ph(U) deg

sameas 0 Gas type 3.5543E-03 EHdot W

ideal Solid type 3.5543E-03 FWork W

! 22

SODUCT Duct

2.6300E-03 aArea m"2 103.1 A lpl Pa

0.2050 bPerim m 125.9 B Ph(p) deg

3.1788E-02 cLength m 2.2143E-04 CIU m73/s
53.91 D Ph(U) deg

sameas 0 Gas type 3.5352E-03 EHdot W

ideal Solid type 3.5352E-03 FWork W

! 23

ISODUCT Duct

2.6300E-03 aArea m™2 91.74 Alpl Pa

0.2050 bPerim m 124.2 B Ph(p) deg

3.1788E-02 cLength m 3.7161E-04 CIUl m73/s
46.13 D Ph(U) deg

sameas 0 Gas type 3.5132E-03 EHdot W

ideal Solid type 35132E-03 FWork W

! 24

ISODUCT Duct

2.6300E-03 aArea m™2 74.83 A Ip! Pa

0.2050 bPerim m 122.0 B Ph(p)  deg

3.1788E-02 cLength m 5.0174E-04 CIU m"3/s
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42.72 D Ph(U) deg
sameas 0 Gas type 34867E-03 EHdot W
ideal Solid type 34867E-03 FWork W
! 25
ISODUCT Duct
2.6300E-03 aArea m"2 53.48 Aipl Pa
0.2050 bPerim m 118.2 B Ph(p) deg
3.1788E-02 cLength m 6.0191E-04 CIUl m"3/s
40.63 D Ph(U) deg
sameas 0 Gas type 3.4553E-03 EHdot W
ideal Solid type 34553E-03 FWork W
! 26
ISODUCT Duct
2.6300E-03 aArea m™2 29.40 A Ipl Pa
0.2050 bPerim m 108.6 B Ph(p) deg
3.1788E-02 cLlength m 6.6543E-04 CIUl m"3/s
39.08 D Ph(U) deg
sameas 0 Gas type 3.4195E-03 EHdot W
ideal Solid type 34195E-03 FWork W
! 27
HXFRST Ambient HX
sameas 3a aArea m2 23.02 Alpl Pa
0.6290 b GasA/A 103.2 B Ph(p) deg
5.0800E-03 cLength m 6.6930E-04 CIU m"3/s
1.7018E-03 dy0 m 38.94 D Ph(U) deg
-1.8309E-03 eHeatih W G 15886E-03 EHdot W
293.0 fEst-T K () 3.3455E-03 FWok W
sameas 0 Gas type -1.8309E-03 GHeat W
copper Solid type 293.0 H MetalT K
! 28
STKSLAB Prime Mover Stack
2.6300E-03 aArea m"2 16.26 A ipl Pa
0.6220 b GasA/A -43.67 B Ph(p) deg
2.4000E-02 cLength m 6.7080E-04 CIU m"3/s
3.0480E-04 dy0 m 38.51 D Ph(U) deg
7.5000E-05 elLplate m 1.5886E-03 EHdot W
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7.4220E-04 FWork W
293.0 GT-beg K

sameas 0 Gas type 293.0 HT-end K

kapton Solid type -2.6033E-03  IStkWrk W

! 29

HXLAST Cold HX

sameas 3a aArea m"2 16.63 Alpl Pa

0.7050 b GasA/A -43.90 B Ph(p) deg

3.0480E-04 cLength m 6.7062E-04 CIUl mA3/s

1.2540E-03 dy0 m 38.51 D Ph(U) deg

0.0000 eHeatin W (t) 7.3668E-04 EHdot W

293.0 fEst-T K =29H? 7.3668E-04 FWork W

sameas 0 Gas type -8.5195E-04 GHeat W

copper Solid type 293.0 H MetalT K

! 30

SOFTEND

0.0000 a Re(Z) ) 16.63 Alpl Pa

0.0000 b Im(Z) t  -43.90 B Ph(p) deg
6.7062E-04 CIU m*3/s
38.51 D Ph(U) deg
7.3668E-04 EHdot W
7.3668E-04 FWork W
2.0846E-02 G Re(Z)

sameas 0O Gas type -0.1564 H Im(Z)

ideal Solid type 293.0 IT K

! 31

DIFFTAR Ipl mismatch _

0.0000 a TargDi =31A7 8.0065E-05 A D1-D2

1A b D1Addr

30A ¢ D2Addr

! 32

DIFFTAR Ph(p) mismatch

0.0000 a TargDi =32A? 3.3780E-04 A D1-D2

1B b DiAddr

30B ¢ D2Addr

! 33
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DIFFTAR Ul mismatch

0.0000 a TargDi =33A? 1.3884E-09 A Di-D2
1C b D1Addr

30C ¢ D2Addr

! 34

DIFFTAR Ph(U) mismatch

0.0000 a TargDi =34A? -1.0691E-04 A D1-D2

1D b D1Addr
30D ¢ D2Addr

! The restart information below was generated by a previous run
! You may wish to delete this information before starting a run
! where you will (interactively) specify a different iteration
! mode. Edit this table only if you really know your model!
INVARS 504050607275
TARGS 529 631 132 133 134 1
SPECIALS 0
PLTVAR 702-11010203040571201
! Plot start, end, and step values. May be edited if you wish.
! Outer Loop: | Inner Loop .
410.0 4270 0.2000 1.000 1.000 1.000
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APPENDIX A.2 THE DELTAE INPUT FILE FOR THE HIGH FREQUENCY MODE
OF THE ANNULAR THERMOA COUSTIC PRIME MOVER

TITLE

Annular resonator (file :: to2dTfhighC.in)
!Created@12:00:08 02-MAY-97 with DeltaE Vers. 3.0b1 for the Power Macintosh
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! 0

BEGIN  Initial

1.0130E+05 aMeanP Pa 0.0000 A Ipl@0 G(0d)

4305 bFreq. Hz 0.0000 B Ph(p)0 G( Oe)

293.0 cT-beg K 0.0000 CIUI@0 G(0f)

500.0 dipl@0 Pa G 0.0000 D Ph(U)0 G( 0g)

0.0000 ePh(p)0 deg G  0.0000 E Heatln G(27¢)

2.9000E-04 fIUI@0 m3/s G

0.0000 gPh(U)0 deg G

air Gas type

ideal Solid type

! 1

SOFTEND 1

0.0000 a Re(Z) (t) 0.0000 A lpl Pa

0.0000 b Im(Z) ® 0.0000 B Ph(p) deg
0.0000 CIU mr3/s
0.0000 DPh(U) deg
0.0000 EHdot W
0.0000 FWork W
0.0000 G Re(Z)

sameas 0 Gas type 0.0000 HIm(Z)

ideal  Solid type 00000 I T K

! 2

ISODUCT Duct

2.6300E-03 aArea m"2 0.0000 A lIpl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIU mr3/s
0.0000 DPh(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W




!

ISODUCT

Duct

2.6300E-03 aArea m"2 0.0000 Alpl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIUl m”3/s
0.0000 D Ph(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m"2 0.0000 A Ipl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 clength m 0.0000 CIUI m"3/s
0.0000 DPh(U) deg

sameas 0 Gas type 0.0000  EHdot W

ideal Solid type 00000 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m"2 0.0000 A lpl Pa

0.2050 bPerim m 0.0000 BPh(p) deg

3.1788E-02 cLength m 0.0000 CIlUI m"3/s
0.0000 DPh(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m"2 0.0000 A lpl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIU m"3/s
0.0000 D Ph(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m"2 0.0000 Alpl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg
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3.1788E-02 cLength m 0.0000 CIU m"3/s
0.0000 DPh(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m™2 0.0000 A Ipl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIUI mr3/s
0.0000 D Pn(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

!

ISODUCT Duct

2.6300E-03 aArea m™2 0.0000 A lpl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIUl mAr3/s
0.0000 DPhU) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

! 10

ISODUCT Duct

2.6300E-03 aArea m™2 0.0000 A Ipl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIUI mr3/s

. 0.0000 DPhU) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

! 11

ISODUCT Duct

2.6300E-03 aArea m™2 0.0000 A lpl Pa

0.2050 bPerim m 0.0000 BPh(p) deg

3.1788E-02 cLength m 0.0000 CIUl m"3/s
0.0000 D Ph(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W
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! 12
ISODUCT Duct

2.6300E-03 aArea m™2 0.0000 A lpl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIUl m"3/s
0.0000 DPh(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

! 13

ISODUCT Duct

2.6300E-03 aArea m"2 0.0000 A Ip! Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIUl m"3/s
0.0000 DPh(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

! 14

VDUCER  Driver

1.0000E-09 aRe(Ze) ohms 0.0000 Alpl Pa

0.0000 b Im(Ze) 0.0000 B Ph(p) deg

1.0000E+04 ¢ Re(T1) V-s/m”"3 0.0000 CIUI  m"3/s

0.0000 d Im(T1) V-s/m"3 0.0000 DPh(U) deg

-1.0000E+04 e Re(T2) Pa/A 0.0000 EHdot W

0.0000 f Im(T2) Pa/A 0.0000 FWork W

1.0000E-09 g Re(Zm) Pa-s/m"3  0.0000 G Workln W

1.0000E-09  h Im(Zm) Pa-s/m”3  0.0000 H Voits V

1.000 i AplVol V 0.0000 IAmps V
0.0000 JPh(Ze) deg

sameas 0 Gas type 0.0000 K IUxl m"3/s

ideal Solid type 0.0000 L Ph(-Ux deg

! : 15

ISODUCT Constriction

2.6300E-03 aArea m2 0.0000 A Ipl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 clength m 0.0000 CIUl m"3/s
0.0000 DPh(U) deg
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sameas 0 Gas type 0.0000 E Hdot

ideal Solid type 0.0000 F Work

! 16

ISODUCT Duct 7

2.6300E-03 aArea m™2 0.0000 A lpl

0.2050 bPerim m 0.0000 B Ph(p)

3.1788E-02 cLength m 0.0000 CIul
0.0000 D Ph(U)

sameas 0 Gas type 0.0000 E Hdot

ideal Solid type 0.0000 F Work

! 17

ISODUCT Duct 8

2.6300E-03 aArea m™2 0.0000. A lpl

0.2050 bPerim m 0.0000 B Ph(p)

3.1788E-02 cLength m 0.0000 Ciul
0.0000 D Ph(U)

sameas 0 Gas type 0.0000 E Hdot

ideal Solid type 0.0000 F Work

! 18

ISODUCT Duct

2.6300E-03 aArea m"2 0.0000 Alpl

0.2050 bPerim m 0.0000 B Ph(p)

3.1788E-02 cLength m 0.0000 C Ul
0.0000 D Ph(U)

sameas 0 Gas type 0.0000 E Hdot

ideal Solid type 0.0000 F Work

! 19

ISODUCT Duct

2.6300E-03 aArea m"2 0.0000 A Ipl

0.2050 bPerim m 0.0000 B Ph(p)

3.1788E-02 cLength m 0.0000 CIlul
0.0000 D Ph(U)

sameas 0 Gas type 0.0000 E Hdot

ideal Solid type 0.0000 F Work

! 20

ISODUCT Constriction
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2.6300E-03 aArea m"2 0.0000 A lpl Pa
0.2050 bPerim m 0.0000 B Ph(p) deg
3.1788E-02 cLength m 0.0000 CIUl m3/s
0.0000 DPh(U) deg
sameas 0 Gas type 0.0000 EHdot W
ideal Solid type 0.0000 FWork W
! 21
ISODUCT Duct
2.6300E-03 aArea m"2 0.0000 A ipl Pa
0.2050 bPerim m 0.0000 B Ph(p) deg
3.1788E-02 cLength m 0.0000 CIU m"3/s
’ 0.0000 DPh(U) deg
sameas 0 Gas type 0.0000 EHdot W
ideal Solid type 0.0000 FWork W
! 22
ISODUCT Duct
2.6300E-03 aArea m™2 0.0000 Alpl Pa
0.2050 bPerim m 0.0000 B Ph(p) deg
3.1788E-02 cLength m 0.0000 CIU m"3/s
0.0000 DPh(U) deg
sameas 0 Gas type 0.0000 EHdot W
ideal Solid type 0.0000 FWork W
! 23
ISODUCT Duct
2.6300E-03 aArea m™2 0.0000 A lpl Pa
0.2050 bPerim m 0.0000 B Ph(p) deg
3.1788E-02 cLength m 0.0000 CIU m"3/s
0.0000 D Ph(U) deg
sameas 0 Gas type 00000 EHdot W
ideal Solid type 0.0000 FWork W
! : 24
ISODUCT Duct
'2.6300E-03 aArea mA2 00000 Alpl Pa
0.2050 bPerim m 0.0000 B Ph(p) deg
3.1788E-02 cLength m 0.0000 CIU m"3/s
0.0000 DPh(U) deg
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sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

! 25

ISODUCT Duct

2.6300E-03 aArea m™2 0.0000 A ipl Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIUl m3/s
0.0000 D Ph(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

! 26

ISODUCT Duct

2.6300E-03 aArea m™ 0.0000 Alpl . Pa

0.2050 bPerim m 0.0000 B Ph(p) deg

3.1788E-02 cLength m 0.0000 CIU m*3/s
0.0000 DPh(U) deg

sameas 0 Gas type 0.0000 EHdot W

ideal Solid type 0.0000 FWork W

! 27

HXFRST Ambient HX

sameas 3a aArea m”2 23.02 A lpl Pa

0.6290 b GasA/A 103.2 B Ph(p) deg

5.0800E-03 cLength m 6.6930E-04 CIUI m"3/s

1.7018E-03  dy0 m 38.94 D Ph(U) deg

-1.8309E-03 eHeatlhn W G 1.5886E-03 EHdot W

293.0 fEst-T K (t) 3.3455E-03 FWork W

sameas 0 Gas type -1.8309E-03 GHeat W

copper Solid type 293.0 HMetalT K

! 28

STKSLAB Prime Mover Stack

2.6300E-03 aArea m™2 16.26 A Ipl Pa

0.6220 b GasA/A -43.67 B Ph(p) deg

2.4000E-02 cLength m 6.7080E-04 CIU m"3/s

3.0480E-04 dy0 m 38.51 D Ph(U) deg

7.5000E-05 elLplate m 1.5886E-03 EHdot W
7.4220E-04 FWork W
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293.0 GT-beg K

sameas 0 Gas type 293.0 HT-end K

kapton Solid type -2.6033 E-03IStkWrk W

! 29

HXLAST Cold HX

sameas 3a aArea m"2 16.63 A lpl Pa

0.7050 b GasA/A -43.90 B Ph(p) deg

3.0480E-04 cLength m 6.7062E-04 CIUl m"3/s

1.2540E-03 dy0 m 38.51 D Ph(U) deg

0.0000 eHeatin W (t) 7.3668E-04 EHdot W

293.0 fEst-T K =29H? 7.3668E-04 FWork W

sameas 0 Gas type -8.5195E-04 GHeat W

copper Solid type 293.0 HMetalT K

! 30

SOFTEND

0.0000 a Re(Z) ® 0.0000 A Ipl Pa

0.0000 b Im(Z) ® 0.0000 B Ph(p) deg
0.0000 CIUI m"3/s
0.0000 D Ph(U) deg
0.0000 EHdot W
0.0000 FWork W
0.0000 G Re(Z)

sameas 0 Gas type 0.0000 H Im(Z)

ideal Solid type 00000 I T K

! 31 '

DIFFTAR ipl mismatch

0.0000 a TargDi =31A? 8.0065E-05 A D1-D2

1A b D1Addr

30A c D2Addr

! 32

DIFFTAR
0.0000

1B b D1Addr
30B ¢ D2Addr

!

Ph(p) mismatch
a TargDi

33

=32A? 3.3780E-04

A D1-D2

DIFFTAR

Ul mismatch
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0.0000
1C b D1Addr
30C ¢ D2Addr
! 34

a TargDi

=33A7 .

1.3884E-09 A D1-D2

DIFFTAR Ph(U) mismatch
0.0000 a TargDi

1D b D1Addr

30D ¢ D2Addr

=34A?

-1.0691E-04 A D1-D2

! The restart information below was generated by a previous run

! You may wish to delete this information before starting a run

! where you will (interactively) specify a different iteration

! mode. Edit this table only if you really know your model!

INVARS 504050607275
TARGS 529 631 132 133 1341
SPECIALS 0
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APPENDIX B. THE MATHEMATICA PROGRAM FOR THE LEAST
SQUARE FIT TO THE FREQUENCY RESPONSE

(* This mathematica program read the plotting data file generated by *)

(* DeltaE and perform a least square fit to find the resonance frequency *)

ClearAll["Global™*"]

(* Read the data file generated by the DeltaE program. *)

(* In this example, the data file is flowDT100.de *)

datfile=ReadList["flowDT100.de", Table[Number,{8 }]1];(* There are éight columns in *)
(* the data file *)

(* Select the data range used in the least square fit, column 1 is the frequencies *)

(* and column 7 is the pressure amplitude *)

data=datfile[[Range[2,19],{1,7}]] (* Determine the bandwidth of fitting  *)

(* Initial guesses of A, f,,, and Q *)

soln = {A->150,f,->437,Q->100};

Attributes[y]={Listable};

ylf_A_f,_,Q_]:= A (f/f,)"2 Abs[Cot[Pi (f/f,-I/(2 Q)V/(Pi ({/{-1/(2 QN];
Attributes[yy] = {Listable};

yylf_] = yIf,A,f,,Q] /.soln;

xlist = Transpose[data][[1]];

ylist = Transpose[data][[2]];

rmserror[A_,f, ,Q_] := Sqrt[ Apply[Plus,(ylist - y[xlist, A,f,,Q]"2]];
rmserror[A,f,,Q]/.soln;

FindMinimum[rmserror[A,f,,Q],{ A,{100,200} },{£,,{435,439} },{Q,{90,110} }]
(* A is an arbitrary constant, f, the resonance frequency, Q the quality factor *)

(* End of program *)
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APPENDIX C. THE MATLAB PROGRAM FOR THE ANNULAR
THERMOACOUSTIC PRIME MOVER

Function updateF.m: The function performs the actual iteration to find the solutions for
the constricted annular prime mover.

% Begin of function %
function [y,iterations]=updateF(y);

%

% usage [newy,iterations] = updateF(y)

% This function implements picards method for updating y
% solving f(y,x)=0 for an annular resonator

% The input y vector is a 8 by 1 vector: [Tm;pre;pim;Ure;Uim;fre;fim;H2dot]
% only the last 5 elements (i.e. Ure, Uim, fre, fim and H2) are updated

% newy =y - inv(J)*f(y,x);

% where J is the Jacobian of f(y)

% REQUIRES: fdjacF.m, funcvF.m, computeL.m,

% Note: Before run this program, make sure to adjust the area ratio and select the
% right temperature (Just active the line for the temperature profile)

% Declare the global variables

global T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Th Tc Tmatrix RsLaLas R Rstr

r = 2.565e-2; % Equivalent radius of the annular resonator, m

Rs =0.7; % The area ratio for the constriction

% Compute the equivalent inductance of constriction

-d = 0.0529; % Width of annulus, m

h = 0.0497, _ % Height of annulus, m

dc = d*sqrt(Rs); % Width of the constriction, m

hc = h*sqrt(Rs); % Height of annulus, m

dst = 4.28e-2; % Width of a slit in the stack m

hst = 6.12¢e-4; % Height of a slit in the stack m

La = computel.(d,h,dc,hc); % Compute the equivalent inductance of constriction
Las = computeL(d,h,dst,hst); % Compute the equivalent inductance of a slit in the

% stack

R = sqrt((dc*hc)./(d.*h));
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Rst = sqrt((dst*hst)./(d.*h));
% The measured temperature profiles for all the measurements

% Compute the equivalent area ratio for one slit

% When run this main program, select the profile based on the porosity
% The low mode and high mode share the same temperature profile
% These temperatures are in °C

% Low mode and high mode with constriction Rs=0.1

% Tmatrix=[21.0 21 21 21 21 21 21 21 21 20.6];

% Tmatrix=[66.9 23.4 22.5 58.8 22.2 21.9 22.2 32.5 25.7 21.4]; % heater = 8V
% Tmatrix=[100.7 25.8 24.3 86.8 23.8 23.2 23.7 41.2 304 22.6]; % heater = 11V
% Tmatrix=[137.8 28.5 26.2 119.2 25.4 24.4 25.2 51.7 36.2 23.6]; % heater = 14V
% Tmatrix=[218.6 36.6 32.4 194.5 30.6 28.7 30.2 82.1 51.8 27.3]; % heater = 20V
% Tmatrix=[278.6 43.9 38 253.1 35.2 32.3 34.5 113.1 66.2 30.2]; % heater = 25V

% Heater voltage
% heater = OV

% Low Mode and high mode with constriction Rs=0.3

% Tmatrix=[29.7 29.5 29.4 29.6 29.5 29.4 29.4 29.3 29.5 29.5];

% Tmatrix=[74.3 30 29.1 66.8 28.9 28.5 28.8 37.8 32.2 28.4];

% Tmatrix=[106.6 31.1 29.6 93.8 29.1 28.4 29.0 44.5 35.1 28.2];
% Tmatrix=[143.9 33.1 30.7 126 29.9 28.9 29.7 54.2 39.4 28.4];

% heater = OV
% heater = 8V
% heater = 11V,
% heater = 14V,

% Tmatrix=[220.7 38.5 34.4 196.2 32.6 30.6 32.1 81.4 50.8 29.5]; % heater = 20V
% Tmatrix=[278.4 44.9 39.1 251.5 36.3 33.2 35.5 110.3 63.1 31.5}; % heater = 25V

% Low and high Mode with constriction Rs=0.7

% Tmatrix=[23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.4];

% Tmatrix=[74.9 25.3 24.3 65.7 24 23.6 23.9 55.1 23.7 23.4];
% Tmatrix=[108.5 27.2 25.5 94 24.9 242 24.8 74.5 30.4 23.9];

% heater = OV
% heater = 8V
% heater = 11V

% Tmatrix=[147.7 29.8 27.3 128.2 26.3 25.1 26.0 100.1 34.5 24.6]; % heater = 14V

% Tmatrix=[221.9 35.6 31.2 196 29.4 27 28.8 157.1 43.6 26.2];

% heater = 20V

% Tmatrix=[280.7 42.5 36.2 252.9 33.3 29.7 32.4 219.2 53.5 29.5]; % heater = 25V

Tmatrix = Tmatrix+273;
T2=Tmatrix(1);
T3=Tmatrix(2);
T4=Tmatrix(3);
T5=Tmatrix(4);
T6=Tmatrix(5);
T7=Tmatrix(6);
T8=Tmatrix(7);
T9=Tmatrix(8);
T10=Tmatrix(9);

% Change temperature to Kelvin
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T11=Tmatrix(10);
Th = 2*T2+T5)/3; % Weighted hot end targeted temperature, K
Tc = (2*T3+T4)/3; % Weighted cold end temperature, K

Nmax = 100; % Maximum number of integration
y=y(:); % Make sure the input vector y is a column vector
y(1,1) = Th; % Fixed the starting temperature at T}

iterations=0;
% Main loop for iterations
while(1)
iterations = iterations + 1;
fvec=funcvF(y); % Compute the difference between the targets and %
% calculated results %
checky = norm(fvec./y(1:5)) % Check the norm of the ratio of the difference %

if checky<1.0E-3 % Set the converging threshold %
fprintf(1, Done\n’);
y=y' % Print out the solution %

[fvec,yend] = funcvF(y);
yend = yend' % print out the integration results at the ends %
Q = yend(1,6)/(2*yend(1,7)) % Find the quality factor %
elseif iterations == Nmax % Terminate the iteration if iteration > N, %
fprintf(1,'Exceed max # of iterations');
return
else
J = fdjacF(y,fvec); % calculate the Jacobian %
diffy = -INfvec; % Use the LU factorization %
if checky<1.0e-1
diffy = diffy/2; % Close to converge, adjust the step size %
elseif checky<5.0e-2
diffy = diffy/4;
elseif checky<1.0e-2
diffy = diffy/6;
end
newy=y
newy(4:8) = y(4:8)+diffy; % Perform a Newton iteration to update y %
y=newy; % only update Ure, Uim, fre, fim and H2 %
fprintf(1,'Computing Update, iterations %4.0f \n',iterations)
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end
end
%

% End of updateF.m %
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Function funcvF.m: The function integrate the coupled ordinary differential equations of

the annular prime mover.

% Begin of function %

function [fvec,yend] = funcvEF(yin)

%

% Includes the ends effect from high order mode method

% This function integrates the annular resonator with the stack/heat exchanger assembly
% at the end of the resonator (including ambient and hot heat exchanger)
% constriction locates between xconl to xcon2

% Requires: ductfunc2.m, ductfunc21.m, ductcon.m,

% , stackfun.m, ode45.m, ambhxfunc.m, hothxfunc, zstuff.m

% Declare the global variables

global T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Th Tc Tmatrix RsLa Las R Rst
yin=yin(:);

d = 0.0529; % Width of annulus m

h = 0.0497; % Height of annulus m

dc = d*sqrt(Rs); % Width of the constriction m
hc = h*sqrt(Rs); % Height of constriction m
cp=1005; % Isobaric heat capacity per unit mass

% These are the positions of the thermocouples, m

xp0= 0;

xp11=0.00293; % Thermocouple # 9

xp12=0.084345; % Thermocouple # 10

xp13=0.39615; % Thermocouple # 11

xp14=0.707955; % Thermocouple # 7

xp15=0.7556; % Thermocouple # 8

xpl =0.76292; % Ambient heat exchanger

xp2 = 0.768; % Prime mover stack

xp3 = 0.7920; % Hot heat exchanger

xconl1=0.133863; % 45° long constriction, 90° from the center of the stack assembly
xcon2= 0.23290;

xpL=0.7923; % Effective length of the annular resonator, m %

% These are not the resolution of the integration

% These are the points in which the results are extracted
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xnl = 20; xn2 = 30;

xn3 = 50; xn4 = 10;

fvec = zeros(5,1); % Set up the fvec vector
x1lspan = linspace(xp0,xp11,xnl);

x12span = linspace(xpl1,xp12,xn2);

x13aspan = linspace(xp12,xconl,xn2);

x13bspan = linspace(xconl,xcon2,xn2);

x13cspan = linspace(xcon2,xp13,xn2);

x14span = linspace(xp13,xp14,xn3);

x15span = linspace(xp14,xp15,xn2);

x16span = linspace(xp15,xp1,xnl);

x2span = linspace(xpl,xp2,xnl);

x3span = linspace(xp2,xp3,xn2);

x4span = linspace(xp3,xpL,xn1);

y0 = yin(1:7); % make sure y0 is column vector and only the first 7 elements used in a duct
y0 = y0(); % Set up the starting boundary conditions

[x11,y11] = ode45('ductfunc2’,x11span,y0); % Use the MATLAB built in ODE45 function
y011 = y11(xnl,:); % Set up the boundary condition for next integration

[x12,y12] = ode45('ductfunc21',x12span,y011);

y012 = y12(xn2,:); % Set up the boundary condition for next integration

[x13a,y13a] = ode45('ductfunc22al’,x13aspan,y012);

% From duct to a constriction, U is continuous but p-=p:,-U,Z,

gamma = 1.4; % Ratio, isobaric to isochoric specific heats
rh = 1.2825e-2; % Hydraulic radius of the resonator, rh=r/2, m
rhc = rh*sqrt(Rs); % Hydraulic radius in the constriction, m

omega = 2*pi*(y13a(xn2,6) + j.*y13a(xn2,7));% Extract the complex frequency
rho = 353.065./y13a(xn2,1); % Density of air as a function of temperature (K)
¢ = 20.0447 *sqrt(y13a(xn2,1)); % Speed of sound in air as a function of temperature (K)
mue = 1.846e-5.*(y13a(xn2,1)/300)."1.5.*(410.4./(y13a(xn2,1)+110.4)); % Viscosity of air
K=2.624e2.*(y13a(xn2,1)./300).A1.5.%(523.831./(y13a(xn2,1)+...
245.4 *exp(27.6./y13a(xn2,1)))); % Thermal conductivity, Air
Pr = 0.60928+0.23017.*exp(-0.0028565.*y13a(xn2,1)); % Prandtl number
dV = sqrt(2.*mue./(rho.*omega)); % Viscous penetration depth %
dK = sqrt(2.*K./(rtho.*cp.*omega)); % Thermal penetration depth %
fv = (1-j)*dV/(2*rh);
fve = (1-))*dV/(2*rhc);
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fk = fv/sqrt(Pr);

fkc = fvc/sqrt(Pr);

k = omega/c *sqrt((1+(gamma-1)*fk)/(1-fv)); % Wave number in a regular duct

kc = omega/c *sqrt((1+(gamma-1)*fkc)/(1-fvc)); % Wave number in the constriction

[H,HmO,mymz2,nynz2}=zstuff(d,h,dc,hc);

Y I=diag(-j*sqrt(mymz2-k.*2)./(k.*rho*c));

Y2=diag(-j*sqrt(nynz2-kc.”2)./(kc.*rho*c));

Zimag=(HmO."*((H*Y2*H.'+Y 1)\HmO0))/(Rs*4*r"2); % Compute the acoustic impedance
% caused by the constriction, using
% higher order mode method

Ral = rho.*omega.*dV.*(1-R)./R.*(1+(1-R.*2)./(pi*R).*log((1+R)./(1-R)))/(Rs*4*1"2);

Zal = Ral+ Zimag;

%Zal=0; % If do not want to included end correction, just set the impedance to zero

% by activating this line

Ul = yl13a(xn2,4) + j.*y13a(xn2,5); % Volume velocity at entrance of the constriction

y013b = yl13a(xn2,:);

y013b(1,2) = y013b(1,2) - real(Zal*U1l); % Correct real part of pressure

y013b(1,3) = y013b(1,3) - imag(Zal*Ul); % Correct imag part of pressure

[x13b,y13b] = ode45('ductcon’,x13bspan,y013b); % Constriction region

% From a constriction to a duct , U is continuous but p,=p,-U,Z,

rho = 353.065./y13b(xn2,1);

c = 20.0447 *sqrt(y13b(xn2,1));

mue = 1.846e-5.*(y13b(xn2,1)/300).71.5.%(410.4./(y13b(xn2,1)+110.4));

K = 2.624e-2.*(y13b(xn2,1)./300).21.5.%(523.8306./(y13b(xn2,1)+...

245.4 *exp(-.27.6./y13b(xn2,1))));% Thermal conductivity, Air

Pr = 0.60928+0.23017.*exp(-0.0028565.*y13b(xn2,1)); %Prandtl number

dV = sqrt(2.*mue./(rho.*omega)); % Viscous penetration depth %

dK = sqrt(2.*K./(rho.*cp.*omega)); % Thermal penetration depth %

fv = (1-)*dV/(2*rh),

fve = (1-))*dV/(2*rhc);

fk = fv/sqrt(Pr); -

fkc = fvc/sqrt(Pr);

'k = omega/c*sqrt((1+(gamma-1)*fk)/(1-fv)); % Wave number in regular duct

kc = omega/c*sqrt((1+(gamma-1)*fkc)/(1-fvc)); % Wave number in the constriction

Y 1=diag(-j*sqrt{mymz2-k.*2)./(k.*rho*c));

Y2=diag(-j*sqrt(nynz2-kc.”2)./(kc.*rho*c));
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Zimag=(HmO."*((H*Y2*H.'+Y 1)\HmO))/(Rs*4*12);

Ra2 = rho.*omega.*dV.*(l-R)./R.*(1+(I-R.AZ)./(pi*R).*log((l+R)./(1-R)))/(Rs*4*r"2);
Za2 = Ra2 + Zimag;

%Za2 = 0,

U2 = y13b(xn2,4) + j*y13b(xn2,5);% Volume velocity at start of the constriction
y013c = y13b(xn2,:);

y013¢(1,2) = y013c(1,2)-real(Za2*U2); % Correct real part of pressure
y013¢(1,3) = y013c(1,3)-imag(Za2*U2); % Correct imag part of pressure
[x13c,yl3c] = ode45('ductfunc22a2’,x13cspan,y013c);

y013 = y13c(xn2,:);

[x14,y14] = ode45('ductfunc23',x14span,y013);

y014 = y14(xn3,:);

[x15,y15] = ode45('ductfunc24',x15span,y014);

y015 = y15(xn2,:);

[x16,y16] = ode45('ductfunc25',x16span,y015);

y016 = y16(xnl,:);

[x2,y2] = ode45('ambhxfunc',x2span,y016); % Integrate in the ambient heat exchanger
% Compute the end corrections for the stack

% Activate these command to include the end corrections in the stack region

%nslit = 57, % Number of the slit

%Aslit = 2.61936e-5; % Area for one slit, m®

%y0=3.06e-4; % Half spacing of the stack, m

%ds = 4.28e-2; % Width of one slit in the stack region, m
Johs = 6.12e-4, % Height of one slit in the stack region, m

Joomega = 2*pi*(y2(xnl,6) + j.*y2(xnl,7)); % Complex frequency

%rho = 353.065./y2(xn1,1);

%oc = 20.0447.*sqrt(y2(xn1,1));

Jomue = 1.846e-5.*(y2(xn1,1)/300).’\1.5.*(410.4./(y2(xn1,1)+110.4));

%dV = sqrt(2.*mue./(tho.*omega)); % Viscous penetration depth in regular duct
%dK = sqrt(2.*K./(rtho.*cp.*omega)); % Thermal penetration depth in regular duct
%fv = (1-j)*dV/(2*rh);

%tk = fv/sqrt(Pr);

%fvs = tanh((1+))*y0/dV)/((1+j)*y0/dV); % fv for Parallel plate

%fks = fvs/sqrt(Pr); % fk for Parallel plate

%k = omega/c *sqrt((1+(gamma-1)*fk)/(1-fv)); % Wave number in regular duct
%ks = omegal/c *sqrt((1+(gamma-1)*fks)/(1-fvs));% Wave number in the constriction
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%[H,HmO0,mymz2,nynz2]=zstuff(d,h,ds,hs);

%Y 1=diag(-j*sqrt(mymz2-k.A2)./(k.*rho*c));

%Y 2=diag(-j*sqrt(nynz2-ks.”2)./(ks.*rho*c));

%Zimag=(HmO0.*((H*Y2*H.'+Y 1)\HmO))/(Aslit);

%Rast3 = rho.*omega.*dV.*(1-Rst)./Rst.*(1+(1-Rst.A2)./(pi*Rst). *log((1+Rst)./(1-...

Rst)))/(Aslit);
%Zastl = (Rast3 + Zimag)/nslit; % Effective impedance for end corrections of the
% stack
%Ustl = y2(xnl,4) + j.*y2(xnl,5); % Volume velocity at entrance of the constriction
Zast1=0; % No end corrections for stack if this line is active
y02 = [y2(xnl,:) yin(8)]; % Add the 8th element (i.e. H2) in the stack region

%y02(1,2) = y02(1,2) - real(Zast1*Ustl); % Correct real part of pressure
%y02(1,3) = y02(1,3) - imag(Zast1*Ustl); % Correct imag part of pressure

[x3,y3] = oded45('stackfun’,x3span,y02); % Integrate in the prime mover stack region

% Activate these commands to include the end corrections in the stack region

P Aslit = 2.61936e-5; % Area for one slit

%rho = 353.065./y3(xn2,1);

%c = 20.0447 *sqrt(y3(xn2,1));

%mue = 1.846e-5.%(y3(xn2,1)/300).21.5.*%(410.4./(y3(xn2,1)+110.4));

%dV = sqrt(2.*mue./(tho.*omega)); % Viscous penetration depth in regular duct

%dK = sqrt(2.*K./(rho.*cp.*omega)); % Thermal penetration depth in regular duct

%fv = (1-j)*dV/(2*rh);

%tk = fv/sqrt(Pr);

J%fvs = tanh((1+j)*y0/dV)/((1+))*y0/dV); % fv for Parallel plate

%fks = fvs/sqrt(Pr); % fk for Parallel plate

%k = omegal/c*sqrt((1+(gamma-1)*fk)/(1-fv));% Wave number in regular duct

%ks = omega/c*sqrt((1+(gamma-1)*fks)/(1-fvs));% Wave number in the constriction

%[H,HmO0,mymz2,nynz2}=zstuff(d,h,ds,hs);

%Y 1=diag( -j*sqrt(mymz2-k.*2)./(k.*rho*c));

%Y2=diag( -j*sqrt(nynz2-ks.*2)./(ks.*rho*c));

%Zimag=(HmO."*(H*Y2*H.'+Y 1)\HmO))/(Aslit);

%Rast4 = rho.*omega.*dV.*(1-Rst)./Rst. *(1+(1-Rst.*2)./(pi*Rst). *log((1+Rst)./(1-...
Rst)))/(Aslit);

%Zast2 = (Rast4 + Zimag)/nslit;% Effective impedance for end corrections of stack

Zast2=0; % If this line ic active, no end corrections for the stack is included

%Ust2 = y3(xn2,4) + j.*y3(xn2,5); % Volume velocity at start of the constriction
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y03 = y3(xn2,1:7); % only the first 7 elements are used in the hot heat exchanger
%y03(1,2) = y03(1,2) - real(Zast2*Ust2); % Correct real part of pressure
%y03(1,3) = y03(1,3) - imag(Zast2*Ust2); % Correct imag part of pressure

[x4,y4] = ode45('hothxfunc',x4span,y03);

yend = [y4(xnl,:) yin(8)]'; % This is the result at the end of the hot heat exchanger

fvec(1,1) = yend(1,1)-Th; % Find the difference of the targeted hot temperature

fvec(2:5,1)= yin(2:5,1)-yend(2:5,1);% Find the differences of the target pre, pim, Ure , Uim

yend = yend(:); % Show results of the integration at the end
%

% End of funcvF.m
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Function fdjacF.m: This function computes the Jacobian using finite difference.

% Begin of function %

function df=fdjacF(yin,fin)

% USAGE: df=fdjacF(yin,fin)

%

% Inputs: y, funcvF input vector to compute Jacobian about
% f evaluation of funcv at y

% Outputs: df = matrix with df(i,j) = dfuncv(i),dy(j)

% This function compute an numerical approximation to the Jacobian matrix
% for the function funcvF

%

% INPUTS: yin in the original guess vector

% fin is the original differences of the target

% Requires: funcvF.m

%

yin=yin(:);

fin=fin(:);

h=1E-10.*abs(yin)+eps; % make y perturbation be 1E-10 of y's current value
% Perturb with respect to U, U, f, f; and H, . i.e. y(4:8)

% DON'T perturb with respect to Tm, pr or pi
df=zeros(5,5); % Initialize the Jacobian matrix (5 by 3)
for i=4:8

% perturb the only ith element of y %
ypert=yin;

ypert(i)=h(i)+yin(i);

% find f with the perturbed y %

pert = funcvF(ypert);

% Forward difference formula %

df(:,i-3) = (fpert(:)-fin(:))./h(i); % Jacobian array
fprintf(1,.");

end

%

% End of funcvF.m %
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Function ductfunc2.m: This function contains the differential equations in a duct region.

% Begin of function %

function ydot = ductfunc2(x,y)

% This function contains the differential equation in a dust region

% dp/dx = -jw*rho*U1/((1-f,)* Area)

% dU/dx = -jw*Area*(1+(gamma-1)*f,)*p1/(rtho*cA2), U, is the volumetric velocity
% The input y is a column vector with the component of

% Y=[Tu:PrePims Ures Uims o Fims Ho 1

% in a duct region, H, is not used, only y(1:7) is used in duct region
%

%

global T2 T3 T4 T5 T6 T7 TS T9 TIO T11 Th Tcr % All input temperature in C
xpll = 0.00293; % Location of the thermocouple #9

y(1) = Th;

y=y(1:7);

r_h=1/2; % Hydraulic radius of the resonator

Area = 4%"2; % Cross-section area of the duct, m’

Tm = y(1);

prl = y(2);

pim = y(3);

Url = y(4);

Uim = y(5);

frl = y(6);

fim = y(7);

U = Utl + j.*Uim; % The volumetric velocity, s/m’

p = prl + j.*pim; % Acoustic pressure

f = frl + j*fim; % Complex frequency

w = 2%pi*f;

% Gas constants for air , Tm in Kelvin, at 1 ATM %

% Thermal conductivity %

K = 2.624e-2*(Tm/300)*1.5%(523.8306/(Tm+245.4*exp(-27.6/Tm)));
% Viscosity of Air % '

mue = 1.846e-5.%(Tm/300).71.5.%(410.4./(Tm+110.4));
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gamma = 1.4; % Ratio, isobaric to isochoric specific heats

cp=1005; % Isobaric heat capacity per unit mass

% Compute gas properties and the f function
[fv,fk,c,rho,K,Ksolid,Prandtl]=airproperty(Tm,w,1);

Tmdot = (T9-Th)/xpll; % Set the temperature gradient along the duct

% set up the ODE equation in a duct region

templ = -j.*w.*rho.*U./((1-fv)*Area);

temp2 = -j.*w.*Area.*(1+(gam-1).*fk).*p./(rho.*c.A2)+...
((fk-fv)*Tmdot*U)/((1-fv)*(1-Prandt])*Tm);

% Set up the ordinary differential equations

prdot = real(templ);

pidot = imag(templ);

Urdot = real(temp2);

Uidot = imag(temp2);

frldot = 0;

fimdot = 0;

ydot =[Tmdot;prdot;pidot;Urdot;Uidot;frldot;fimdot];
%

% End of ductfunc2.m %
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Function ambhxfunc.m: This function contains the differential equations in the ambient
heat exchanger.

% Begin of function %

function ydot = ambhxfunc(x,y)

% This function contains the differential equations in the ambient heat exchanger

% dp/dx = -jw*rho*U1/((1-f,)*Area)

% dU/dx = -Jjw*Area*(1+(gamma-1)*f,)*p1/(tho*cA2), U, is the volumetric velocity
% The input y is a column vector with the component of

- % Y=[TwiPees Pimi Ures Ui Froifims ol

% in the ambient heat exchanger region, H, is not used

% Note that only y(1:7) is used here

%

global T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Th Tc % All input temperature in C
y = y(1:7);

y=y(%); % Make sure y0 is a column vector
Aambgas = 1.6547¢-03; % Gas area. m*

yOamb = 1.7018e-03; % Half spacing of plates for ambient heat exchanger, m
y(1)=Té6; % Ambient heat HX at T, Kelvin
Tm = y(1);

prl = y(2);

pim = y(3);

Utl = y(4);

Uim = y(5);

frl = y(6);

fim = y(7);

U = Url + j.*Uim; % The volumetric velocity, s/m>

p = prl + j.*pim; % Acoustic pressure

f = frl + j*fim; % Complex frequency

w = 2¥%pi*f;

% Gas properties for air , Tm in Kelvin, at 1 atm %
% Thermal conductivity
K = 2.624e—2*(Tm/300)"1.5*(523.8306/(Tm+245.4*exp(-27.6/Tm)));
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¢ = 20.0447*sqrt(Tm); % speed of sound in the air

mue = 1.846e-5.%(Tm/300).71.5.%(410.4./(Tm+110.4)); % Viscosity of Air
rho = 353.065/Tm; % Density of air

gam = 1.4, % Ratio, isobaric to isochoric specific heats
cp=1005; % Isobaric heat capacity per unit mass

deltaK = sqrt(2.*K./(rho.*cp.*w)); % Thermal penetration depth, m
deltaV = sqrt(2.*mue./(rtho.*w)); % Viscous penetration depth, m
rootPrandtl=sqrt(mue.*cp./K);

fv = tanh((1+j)*yOamb/deltaV)/((1+j)*yOamb/deltaV); % fv for Parallel plate
fk = fv./rootPrandtl; % fk for Parallel plate
% set up the ODE equations in the ambient heat exchanger region

templ = -j.*w.*rho.*U./((1-fv)*Aambgas);

temp2 = -j.*w.*Aambgas.*(1+(gam-1).*fk).*p./(rho.*c.*2);

Tmdot = 0; % Note that it is assumed no temperature gradient across the ambient heat
% exchanger

prdot = real(templ);

pidot = imag(templ);

Urdot = real(temp2);

Uidot = imag(temp2);

fridot = 0;

fimdot = 0;

ydot =[Tmdot;prdot;pidot;Urdot;Uidot;frldot;fimdot];
%

% End of ambhxfunc.m %
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Function ductcon.m: This function contains the differential equations in the constricted
duct.

% Begin of function %

function ydot = ductcon(x,y)

% This function contains the differential equations in the constriction

% dp,/dx = -jw*rho*U1/((1-f,)* Area)

% dU/dx = -jw*Area*(1+(gamma-1)*f)*p1/(rho*c”2), U, is the volumetric velécity
% The input y is a column vector with the component of

% Y=[T3PeeiPins Ures Uimifres fins Ha

% in a duct region, H2 is not used, only y(1:7) is used in duct region

%

global T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Th Tc Rs r
% Define the locations of the constriction and thermoacoustics (in m)
xpl2 = 0.084345; % Thermocouple # 10

xpl3 = 0.39615; % Thermocouple # 11

xconl1=0.133863; % Constriction locates at xconl to xcon2
xcon2= 0.23290; % 45° long constriction, 90° from center of stack
y=y(1:7);

r_h =1/2%sqrt(Rs) ; % Hydraulic radius of the constricted duct. m
Area = Rs*4*rA2,; % Cross-section area of the duct, m

Tm = y(1);

prl = y(2);

pim = y(3);

Utl = y(4);

Uim = y(5);

frl = y(6);

fim = y(7);

U = Url + j.*Uim; % Volumetric velocity, s/m’

p = prl + j.*pim; % Acoustic pressure

f = frl + j*fim; % Complex frequency

w = 2%pi*f;

% Gas properties for air , Tm in Kelvin, at 1 atm %
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cp=1005; % Isobaric heat capacity per unit mass

¢=20.0447 *sqrt(Tm); % Speed of sound in air .

rho=353.065./Tm; % Density of air

gam = 1.4; % Ratio, isobaric to isochoric specific heats

% Thermal conductivity, Air, Tm in Kelvin

K = 2.624e-2.%(Tm./300).71.5.%(523.8306./(Tm+245.4. *exp(-27.6./Tm)));
mue = 1.846e-5.%(Tm/300).71.5.¥(410.4./(Tm+110.4)); % Viscosity of Air
Prandtl = 0.60928+0.23017.*exp(-0.0028565.*Tm); % Prandtl number

deltaK = sqrt(2.*K./(rtho.*cp.*w)); % Thermal penetration depth in the constriction, m

deltaV = sqrt(2.*mue./(tho.*w)); % Viscous penetration depth in the constriction, m
fv = (1-)).*deltaV./(2*r_h); % f, of the constriction
fk = fv./sqrt(Prandtl); % f, of the constriction

Tmdot = (T11-T10)/(xp13-xp12); % Temperature gradient across the constriction

% set up the ODE equation in a constricted duct region

templ = -j.*w.*rho.*U./((1-fv)*Area);

temp2 = -j.*w.*Area.*(1+(gam-1).*fk).*p./(rho.*c.A2)+...
((fk-fv)*Tmdot*U)/((1-fv)*(1-Prandtl)*Tm);

prdot = real(templ);

pidot = imag(templ);

Urdot = real(temp2);

Uidot = imag(temp2);

frldot = 0;

fimdot = 0;

ydot =[Tmdot;prdot;pidot;Urdot;Uidot;frldot;fimdot];

% End of ductcon.m %
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Function stackfun.m: This function contains the differential equations in the prime
mover stack.

% Begin of function %

function ydot = stackfun(x,y)

% This function contains the differential equations in the prime mover stack
% to integrate in the stack region

% The input y is a column vector with the component of

% Y=IToiPresPimi Ures Uimsfrosfims Ho

%

% Requires: airproperty.m

%

global T2 T3 T4 TS5 T6 T7 T8 T9 T10 T11 Th Tc

y=y();

Agas = 1.7995e-3; % Total gas cross section area, m’, 56 cover glasses
AsAgas = 0.2237, % Asolid/Agas in the stack region

y(1) = Tc; % Ambient side's temperature of the prime mover stack
Tm = y(1);

prl = y(2);

pim = y(3);

Url = y(4);

Uim = y(5);

frl = y(6);

fim = y(7);

H2 = y(8); % Time-averaged energy flux, constant along the stack
U = Ut + j.*Uim; % Volumetric velocity, s/m’

p = prl + j.*pim; % Acoustic pressure

f = frl + j*fim; % Complex frequency

w = 2¥pi*f;

% Gas properties for air

[fv.fk,c,rho,K,Ksolid,Prandtl] = airproperty(Tm,w,2); % index == 2 for parallel plates
% geometry

gam = 1.4; % Ratio, isobaric to isochoric specific heats

cp=1005; % Isobaric heat capacity per unit mass
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% H2 is the time-averaged energy flux, constant along the stack %

dTmdx1 = H2/Agas-0.5/Agas*real(p*U"*(1-((fk-fv')/((1+Prandtl)*(1-fv')))));

dTmdx2 = 0.5*rho*cp*abs(U)*2*imag(fk+Prandtl*fv')/(real(w)*(1-Prandti*2)*abs(1-...

fv)r2*Agash2) - K- AsAgas*Ksolid;

dTmdx = dTmdx1/dTmdx2; % Temperature gradient in the stack region

templ = -j.*w.*rho.*U./((1-fv)*Agas);

temp2 = -j.*w.*Agas.*(1+(gam-1).*¥fk).*p./(tho.*c.A2)+((fk-fv)*dTmdx*U)/((1-fv)*(1-...
Prandtl)*Tm); ‘

Tmxdot = dTmdx;

prdot = real(templ);

pidot = imag(templ);

Urdot = real(temp2);

Uidot = imag(temp2);

frldot = 0;

fimdot = 0;

H2dot = 0; % H2 is constant through the stack

ydot =[Tmxdot;prdot;pidot;Urdot;Uidot;frldot;fimdot;H2dot];

% End of stackfun.m %
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Function airproperty.m: This function compute the properties for air.

% Begin of function %

function [fv,fk,c,rho,K,Ksolid,Prandtl] = airproperty(T,w,index)
% This function compute the air properties at 1 atm and T Kelvin
% if  index == 1 >> BL approximation for regular duct

% index == 2 >> Parallel plate for stack region

% index == 3 >> BL approximation for constricted duct
global Rs

r_h = 2.5654E-2/2; % Hydraulic radius of the resonator is 1/2
y0 = 3.06e-4; % Half spacing of plates for stack, m
cp=1005; % Isobaric heat capacity per unit mass

c=20.0447 *sqrt(T); % Speed of sound in air
rho=353.065./T;
% Thermal conductivity, Air
K = 2.624e-2.%(T./300).71.5.%(523.8306./(T+245.4. *exp(-27.6./T)));
Ksolid = 0.2*(1-exp(-T/100)); % Thermal conductivity, kapton
mue = 1.846e-5.*(T/300).21.5.%(410.4./(T+110.4)); % Viscosity of Air
Prandtl = 0.60928+0.23017.*exp(-0.0028565.*T); % Prandt] number
deltaK = sqrt(2.*K./(rho.*cp.*w)); % Thermal penetration depth, m
deltaV = sqrt(2.*mue./(rho.*w)); % Viscous penetration depth, m
if index ==
fv = (1-j).*deltaV./(2*1_h); % fv for boundary layer approximation
elseif index ==
fv = tanh((1+j)*y0/deltaV)/((1+j)*y0/deltaV); % fv for Parallel plate
elseif index ==
fv = (1-j).*deltaV./(2*r_h*sqrt(Rs));% fv for boundary layer approximation
% in the constricted duct
else
fprintf(1," Wrong index number !!")
return
end
fk = fv./sqrt(Prandtl);

% End of airproperty.m %
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Function plotpUF.m: This function plot the acoustic pressure distribution in the annular
prime mover prime mover stack

% Begin of function %

function [X,y,pnorm]= plotpUF(yin)

% This function plot the acoustic pressure amplitude of the auunlar prime mover
% It uses the solution from “updataF.m” and integrates "yin" from x=0 to x=xL
%

% Note: The first section of this function which is not included here,

% contains the function "funcvF.m”. It uses funcvF.m to integrate

% the solution from “updateF.m” from x0 to xL

%

% Put :funcvF.m here

%

dT = Th-Tc; % Temperature difference across the prime mover stack, K

freq = y0(6,1) +j*y0(7,1); % Complex frequency

% Combine the solution vector

% x is the position vector, y is the solution matrix

x=[x11;x12;x13a;x13b;x13¢c;x14;x15;x16;x2;x3;x4];

y=[y11(;,1:7);y12(:,1:7);y13a(:,1:7);y13b(:,1:7);y13c(:,1:7);y 14(:,1:7);y15(:,1:7);...
y16(:,1:7);y2(,1:7);y3(:,1:7);y4(:,1:];

T=yG0;

p =y(,2)+i*y(:,3); % Complex acoustic pressure

U =y(,d)+j*y(:,5); % Complex volume velocity

pm=zeros(8,1);

% Find the theoretical pressure amplitude at the locations of each microphones

% There are 8 microphones used in the measurement

for i=1:8
xm(i) = 0.03483+(i-1)*9.90375¢e-2; % Microphone location, m
[Y.index] = min(abs(x-xm(i))); % Compute the corresponding index'
pc(i)=pnorm(index); % Compute the theoretical values at
% each miérophones’ locations
end
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pe=pc(®);

% These are the calibrated measured pressure amplitude at each microphones
% For the constricted annular prime mover

% Note that all these measurements are subjected to the measured temperature profile listed
% in the function “updateF.m”

%

% Low mode, With constriction

% Rs = 0.7, low mode
%pm=[34.64;20.63;14.82;31.92;31.18;13.42;12.07;28.41]"; % Heater = OV
%pm=[35.44;21.3;15;32.63;31.94;13.78;12.16;29.07]‘; % Heater = 8V
%pm=[35.72;21.77;14.95;33.05;32.53;14.09;12.17;29.39]’; % Heater = 11V
%pfn=[36.26;22.37;15.14;33.77;33.16;14.5;12.3;30.03]'; % Heater =14V
%pm=[37.38;23.76;15.3;35.39;35.24;15.57;12.62;31.45]"; % Heater = 20V
%pm=[37.98;24.63;15.46;36.71;36.71;16.29;13.1;32.65]'; % Heater = 25

% Rs=0.3, low mode
%pm=[34.89;26.09;12.32;34.67;28.18;10.54;11.6;26.91]"; % Heater = OV
%pm=[39.74,29.49;14.06;38.56;31.29;11.57;13.08;29.95]"; % Heater =V§
%pm=[43.11;32.27;15.82;42.16;34.18;12.56;14.41;32.77]"; % Heater = 11V
%pm=[47.39,35.68;18.16;46.65;37.88;13.71;16.1;36.31]"; % Heater = 14V
%pm=[58.26;45.57;24.5;60.3;48.71;17.44:21.35:47.1 17 % Heater = 20V
%pm=[55.92;55.06;30.23;74.79;60.53;21.48;27.1;58.8]"; % Heater = 25V

% Rs=0.1, low mode
%pm=[40.57;37.74,34.13;38.99;28.57;10.43;9.76;26.8]"; % Heater = OV
%pm=[47.45;44.12;39.87;45.48;33.24;11.91;11.76;31.61]'; % Heater = 8V
%pm=[53.45;50.17;45.87;52.2;38;13.43;13.95;36.4]'; % Heater = 11V
Ppm=[62.9;59.89;54.71,62.74;45.34;15.77;17.47;43.7]"; % Heater = 14V
%pm=[91.08;97.23;89.03;104.3;75.09;25.35;32.76;73.7]'; % Heater = 20V
%pm=[1 17.4;155.5;145.9;178.6;128.7;43.3;60.38;135.1]; % Heater = 25V

% High mode, With constriction
% Rs=0.7, high mode

Popm=[7.29;12.45;11.79;6.47;4.78;9.75;12.213;6.14]"; % Heater = OV
pm=[8.03;13.09;11.48;5.6,5.44;10.19;11.67;5.17]"; % Heater = 8V
%pm=[8.14;12.99;11.19;5.43;5.66;10.14;11.3;4.92]'; % Heater = 11V
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%pm=[8.41;13.22;11.19;5.39;5.97;10.3;11.23,4.84]";
%pm=[8.7;13.29;10.96;5.38;6.43;10.35;10.94;4.757';
%pm=[8.59;13.07;10.67,5.5;6.65;10.26;10.7;4.79]";
% Rs=0.3, high mode
%pm=[6.86;12.83;6.18;6.49;2.87;9.72;11.99;4.47]',
%pm=[7.24;13.41;6.43;6.56;3.05;10;12.12;4.32]";
%pm=[7.38;13.64,;6.69;6.62;3.19;10.18;12.21,4.22]';
%pm=[7.45;13.83,;6.95;6.63;3.32;10.34;12.27;4.06]';
%pm=[7.41;14.4;7.48,6.81;3.67;10.87;12.71;3.87]";
%pm=[5.56;14.5;7.61;6.89;3.89;11.16;12.93;3.671";
% Rs=0.1, high mode
%pm=[8.75;15.87;14.26;8.5;2.63;11.37;12.68;4.99]';
%pm=[9;16.27;14.48;8.59;2.83;11.67;12.85;4.76]';
%pm=[8.98;16.33;14.65;8.6;2.94;11.79;13;4.56]";
%pm=[8.98;16.8;15.07;8.84;3.13;12.21,13.66,4.48]";
%pm=[7.69;17.31;15.12;8.99;3.5;12.87;15.10;4.17]';
%pm=[6.39;17.4,14.87;9.46;3.77;13.43;15.79;4.01]";

% Heater = 14V
% Heater = 20V
% Heater = 25V

% Heater = 0V
% Heater = 8V
% Heater = 11V
% Heater = 14V
% Heater = 20V
% Heater = 25V

% Heater = OV
% Heater = 8V
% Heater = 11V
% Heater = 14V
% Heater = 20V
% Heater = 25V

% A least fit is applied to the predicted values and the measured data

A=pm*pc/(pc'*pc); % Find the least square fit constant

pmscal=pm./A;

% These are the actual positions of the microphones, m

% Normalized microphone voltage by the constant A

xpm=[0.03483;0.13387;0.23291;0.33195;0.43099;0.53003;0.62907;0.72811];

clg
Ix =[0.7629 0.7629];

% Mark the starting location for stack assembly

1x1=[0.133863 0.133863 ]; % Mark the location of the constriction

ly1=[0 1.2];
1x2=[0.2329 0.2329 ];
ly2=[0 1.2];

% Mark the location of the constriction

% Plot the predicted pressure amplitude vs. the least square of the measured data

plot(x,abs(p)./max(abs(p)),b-',xpm,pmscal,'ro’,1x,ly,'g--',Ix1,ly1,'g:",1x2,1y2,'g:")

legend('Matlab program ','Measured data',’ Stack region', 'Constriction');

%title(['Low mode with end effect 3 ; dT = ',num2str(dT),' Kelvin ;...

% freq = ",num2str(freq),’ ; Rs = ",;num2str(Rs)])

title(['High mode with end effect 3 ; dT = ",num2str(dT), Kelvin ;...
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% Title for low mode

% Title for high mode



freq = ",num2str(freq), ; Rs = ',num2str(Rs)])
xlabel('Position, m')
ylabel("Normalized pressure’)
axis([0 0.7923 0 1.2])

% End of plotpUF.m %
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Function computeL.m: This function computes the equivalent inductance for the series
acoustic impedance Za(w) of a size discontinuity between a duct dxh and dcxhc using
higher order mode theory.

This function is contributed by Ralph T. Muehleisen

% Begin of function %
function La=computeL(d,h,dc,hc);

%

% Inputs

% d = depth of main channel

% h = height of main channel

% dc = depth of constriction

% hc = height of constriction

% Outputs

% La = equivalent inductance of constriction
%

% This function computes the equivalent inductance for the

% series acoustic impedance Za(w) of a size discontinuity between a
% duct dxh and dcxhc using higher order mode theory.

% The discontinuity is assumed to be symmetric

% in the y direction and asymmetric in the z direction

% (i.e. going from alxbl to a2xb2 the open area in duct 2 is

% (d-dc)/2<y<(d+dc)/2 and (h-hc)<z<h

%o

% To use this add the following lines to your code

%

% In the beginning:

% La = computeL(d,h,dc,hc)

% R=sqrt((dc*hc)./(d.*h));

% Ra = rho.*w.*dV.*(1-R)./R.*( 1+ (1-R.A2)./(pi*R).*log((1+R)./(1-R)) );
% Za = Ra + j*w*La;

R=sqrt((dc*hc)./(d.*h));

% compute the coupling matrix H, using n2=3 modes in small constriction
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% and select n1 based on relative sizes
n2=3;
nl=round(n2/sqrt(R));

% call h2d to get the full coupling matrix
[Hfull,my,mz,ny,nz] = h2d(R,n1,n2);
[MH,NH] = size(Hfull);

HOO= Hfull (1,1);

% extract out the higher order mode terms
H = Hfull(2:MH,2:NH);

% Extract out the plane wave terms
HmO = Hfull(2:MH,1);

my = my{(2:MH);
mz = mz(2:MH);
ny = ny(2:NH);

nz = nz(2:NH);

mymz2 = (my.*pi./d).*2 + (mz.*pi./h).A2;
nynz2 = (ny.*pi./dc).A2 + (nz.*pi./hc). 2;

% The inductance approximation, it assumes k2 << my2mz2 or ny2nz2 and k~kc

Yin = diag(sqrt(mymz2));
Y2n = diag(sqrt(nynz2));

La = rho* (HmO0.' *inv(H*Y2n*H.' + Y In)*HmO0)/(hc*dc);

return

% End of computeL.m %
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Function zstuff.m: This function computes the scattering matrices used in computation of
series acoustic impedance Za(w) of a size discontinuity between a duct dxh and dcxhc
using higher order mode theory.

This function is contributed by Ralph T. Muehleisen

% Begin of function %

function [H,HmO,mymz2,nynz2]=zstuff(d,h,dc,hc);
% usage [H,HmO,mymz2,nynz2}=zstuff(d,h,dc,hc);
%

% Inputs

% d = depth of regular duct

o h = height of regular duct

%o dc = depth of constriction

% hc = height of constriction

%

% Outputs

% H = higher order mode scattering matrix

%o HmO = scattering vector back to plane wave modes
% mymz2, nynz2 = indices of higher order modes
%

% This function computes the scattering matrices used in computation
% of series acoustic impedance Za(w) of a size discontinuity between a
% duct dxh and dcxhc using higher order mode theory.

% The discontinuity is assumed to be symmetric

% in the y direction and asymmetric in the z direction

% . (i.e. going from alxbl to a2xb2 the open area in duct 2 is
% d-dc)/2<y<(d+dc)/2 and (h-hc)<z<h
%

% Add the following lines to your program

% somewhere in the beginning add

% [H,HmO0,mymz2,nynz2]=zstuff(d,h,dc,hc);

%

% In the frequency dependent part add following. If the constriction is on the right
% Yi=diag( -j*sqrt( mymz2-k.A2)./(k*rho*c));

%o Y2=diag( -j*sqrt(nynz2-kc.*2)./(kc.*rho*c));
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% Zimag=(HmO0."*((H*Y2*H.'+Y 1)\HmO))/Sc;
% R=sqrt((dc*hc)./(d.*h))
% Ra = rho.*w.*dV.*(l-R)./R.*(1+(1-R."2)./(pi*R).*Iog((1+R)./(1-R)));

% Za = Ra+ Zimag;
%

R=sqrt((dc*hc)./(d.*h));
% Compute the coupling matrix H, using n2=3 modes in small constriction
% and select nl based on relative sizes
n2=3;
nl=round(n2/R);
if n1> 10

nl=10;
end
% Call h2d.m to get the full coupling matrix
[Hfull,my,mz,ny,nz]=h2d(R,n1,n2);
[MH,NH]=size(Hfull);

HO0=Hfull(1,1);

% Extract out the higher order mode terms
H=Hfull(2:MH,2:NH);

% extract out the plane wave terms
HmO =Hfull(2:MH,1);
my=my(2:MH);

mz=mz(2:MH);

ny=ny(2:NH);

nz=nz(2:NH);

mymz2 = (my.*pi./d).*2 + (mz.*pi./h).A2;
nynz2= (ny.*pi./dc).*2 + (nz.*pi./hc). 2;
return

% End of zstuff.m %
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Function h2d.m: This function is used to calculate the coupling matrix H for a
change of size of a square duct (axa)->(bxb) with R=b/a.
This function is contributed by Ralph T. Muehleisen

% Begin of function %

function [H,my,mz,ny,nz]=h2d(R,N1,N2)
%

% Inputs:

% Ry = a2/al = width ratio of duct,
% Rz = b2/bl = height ratio of duct

% N1= # of modes in large duct region and

% N2 = # of modes in small duct in one direction.
%

% Outputs:

% H = coupling matrix

% Mx = large duct y mode matrix

% Mz= large duct z mode matrix

% Ny = small duct y mode matrix

% Ny = small duct z mode matrix

%

% The routine uses the N1 and N2 lowest frequency modes in each section.
% It assumes that the y direction constriction is symmetric (i.e b is

% centered on a) and the z constriction is asymmetric (b is at one

% edge of a

%

Nt2=N2.72;

Nt1=N1./2;

% Generate ny, nz

temp=(0:N2-1)';

ny=zeros(Nt2,1);

nz=ny;

for i=0:N2-1
ny(i*N2 + (temp+1),1)=[i.*ones(size(temp))];
nz(i*N2 + (temp+1),1)=temp;
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end

% now sort the modes by frequency

f2=sqrt(ny.”2 + nz.A2), % Compute relative freq of each mode
[y, I]=sort(f2); % Sort the freq.

ny=ny(I); % Pull out ny and nz

nz=nz(I);

% Generate my,mz

temp=(0:N1-1)';

my=zeros(Ntl,1);

mz=my;

for i=0:N1-1
my(i*N1 + (temp+1),1)=[i.*ones(size(temp))];
mz(i*N1 + (temp+1),1)=temp;

end

fl=sqrt(my.*2 + mz.A2); % Compute relative freq of each mode
[y, I]=sort(f1); % Sort the freq.

my=my(I); % Pull out ny and nz

mz=mz(I);

% convert my,mz,ny,nz into the matrices used to compute H=Hy*Hy;
[Ny,My]=meshgrid(ny,my);
[Nz,Mz]=meshgrid(nz,mz);

Mypio2=My.*pi/2;

Hy=zeros(size(My));

Hz=Hy;

% first compute H for the symmetric y direction
e=(1-R)/2;

sme=sin(My*pi*e);

cme=cos(My*pi*e);
smepr=sin(My*pi*(e+R));
smep2r=sin(My*pi*(e+2*R));

% first fill in the general terms

Hy=-2*R.'\(3/2).*My.*(sme-(-1)."Ny.*smepr)./(pi*((My.*R).’\2-Ny."2+eps));
% find the n=m*R terms (including m=n=0) and set them to (-DM(m+n)*Sqrt(R)

I=find(abs(Ny-R*My)<10*eps);
temp=(2*My.*pi.*R.*cme-sme+smep2r)./(4*My*pi*sqrt(R)+eps);
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Hy(D=temp(l);

% find the m=0 terms and set them to zero

I=find(My==0);

Hy()=0*I;

% Find the n=0 terms. they were computed above by the general expression
% but are sqrt(2) too big

I=find(Ny==0);

Hy(D=Hy(I)/sqrt(2);

% find the m=n=0 terms and set them equal to sqrt(R)

I=find(My==0 & Ny==0);

Hy(I)=sqrt(R)*ones(size(I));

% second compute H for the asymmetric z direction

e=(1-R);

sme=sin(Mz*pi*e);

cme=cos(Mz*pi*e);

smepr=sin(Mz*pi*(e+R));

smep2r=sin(Mz*pi*(e+2*R));

% first fill in the general terms
Hz=-2*R.~(3/2).*Mz.*(sme-(-1).ANz.*smepr)./(pi*((Mz.*R).*2-Nz.A2+eps));
% find the n=m*R terms (including m=n=0) and set them to (-1)*(m+n)*Sqrt(R)
I=find(abs(Nz-R*Mz)<10*eps);
temp=(2*Mz.*pi.*R.*cme-sme+smep2r)./(4*Mz*pi*sqrt(R)+eps);
Hz(I)=temp(I);

% Find the m=0 terms and set them to zero

I=find(Mz==0);

Hz(I)=0*I;

% find the n=0 terms. they were computed above by the general expression
% but are sqrt(2) too big

I=find(Nz==0);

Hz(D)=Hz(I1)/sqrt(2);

% find the m=n=0 terms and set them equal to sqrt(R)

I=find(Mz==0 & Nz==0);
'Hz(I) = sqrt(R)*ones(size(1));

H = Hy.*Hz;

% End of h2d.m %

167




Function update2st.m: This function iterates the ordinary differential equation for a two-
stack annular prime mover.

% Begin of function %

function [y,iterations]=update2st(y);

%

% .

% usage [newy,iterations] = update2st(y)

%

%

% This function implements picards method for updating y

% solving f(y,x)=0 for a resonator

% The input y vector is a 8 by 1 vector: [Ta3PreiPim Ures Ui Fres Fims Hoas Hop
% only the last 6 elements (i.e. Uy, U, f., fin, H,,, and H,,) are updated
%

% newy =y - inv(J)*f(y,x);

% where J is the Jacobian of f(y)

% REQUIRES: fdjac2st.m, func2st.m

Nmax = 50;
y =y
iterations = 0;
while(1)
iterations = iterations + 1;
fvec=func2st(y);
checky = norm(fvec./y(1:6)) % check the norm of the ratio of the diffenence %

if checky < 1.0E-2 % to the solution, be sure to use "./" not "/" %
fprintf(1,'Done\n’);
y=y' % Print out the solution %
[fvec,yend] = func2st(y);
yend = yend' % print the integration results at the ends %
Q = yend(1,6)/(2*yend(1,7)) % Find the quality factor %
return

elseif iterations == Nmax

fprintf(1,'Exceed max # of iterations");
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end

return

else
I = fdjac2st(y,fvec); % calculate the Jacobian %
diffy = -J\fvec; % Use LU factorization to find the correction to the guess %
if checky<1.0e-1 % Reduce the step size when close to solution %
diffy = diffy/2;
elseif checky < 5.0e-2
diffy = diffy/4;
elseif checky < 5.0e-3
diffy = diffy/6;
end
newy =ys;
newy(4:9) = y(4:9) + diffy; % Do a Newton iteration to update y %
y = newy % only update Ure, Uim, fre, fim, H2a, and H2b %
fprintf(1,'Computing Update, iterations %4.0f \n',iterations)

end

% End of update2st.m %
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Function fdjac2st.m: This function computes the Jacobian for the two-stack annular
prime mover using finite difference.

% Begin of function %

function df=fdjac2st(yin,fin)

% USAGE: df=fdjac2st(yin,fin)

%

% INPUTS: y funcv input vector to compute Jacobian about

% f evaluation of funcv aty

% OUTPUTS: df = matrix with df(i,j) = dfuncv(i),dy(j)

% This function compute an numerical approximation to the Jacobian matrix
% for the function funcv

% INPUTS:

% yin in the original guess vector

% fin is the original differences of the target
%

% Requires: func2st.m

yin = yin(:);

fin = fin(:);

h = 1E-10.*abs(yin)+eps; % make y perturbation be 1E-10 of y's current value
% Perturb with respect to Ur, Ui, fr, fi and H2a H2b . i.e. y(4:9)

% DON'T perturb with respect to Tm, pr or pi

df = zeros(6,6); % Initialize the Jacobian matrix (6 by 6)
forI =4:9
% perturb the only ith element of y

ypert=yin;

ypert(i) = h(i)+yin(i);
% find f with the perturbed y
fpert = func2st(ypert);
% Forward difference formula %
df(:,i-3) = (fpert(:)-fin(:))./h(i); % Jacobian matrix %
fprintf(1,'.";
end

% End of fdjac2st.m %
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Function funcv2st.m: The function integrate the coupled ordinary differential equations

of the two-stack annular prime mover.

% Begin of function %

function [fvec,yend] = func2st(yin)

% This function integrates coupled ODE for the two stack annular prime move

% Requires:

% duct2stl.m, hothx2stl.m, stackl.m, stack2.m, ambhx2stl.m, ambhx2st2.m,
% hothx2stl.m, hothx2st2.m, ode45.m

% Note: Most of these functions are similar to the functions for the constricted
% annular prime mover. Therefore, only the main functions are included here.

global Th Tc¢

% All input temperature in K

% Before to execute the program, be sure to adjust %
% the target hot heat exchanger temperature to the desired value %
Th = 393;

Tc = 293;

yin = yin(3);

xp0 = 0;

xpl = 0.16869; % Starting location for the first satck assembly

xp2 = 0.1689948;
xp3 = 0.1929948;
xp4 = 0.198075;

xp5 = 0.76292;
xp6 = 0.768;
xp7 = 0.792;
xpL = 0.7923;
xnl = 50;

xn2 = 10;

xn3 = 20;

fvec = zeros(6,1);

% End of the first stack assembly

% Starting location for the second satck assembly

% End of the second stack assembly
% Effective length of the resonator, m

x1lspan = linspace(xp0,xpl,xnl);

Xx2span = linspace(xpl,xp2,xn2);

x3span = linspace(xp2,xp3,xn3);

x4span = linspace(xp3,xp4,xn2);
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x3span = linspace(xp4,xp3,xnl);

x6span = linspace(xp5,xp6,xn2);

X7span = linspace(xp6,xp7,xn3);

x8span = linspace(xp7,xpL,xn2);

%

% Make sure that y0 is column vector, only the first 7 elements are used in the duct%

y0 = yin(1:7);

y0 = y0(:);

[x1,y1] = ode45('duct2stl’,x1span,y0);

y0l = yl(xnl,:);

y01(1,1) = Th;

[x2,y2] = ode45('hothx2st1',x2span,y01);% Temperature at Th

y02 = [y2(xn2,:) yin(8)]"; % Add the 8th element (i.e. H2a) for the ist stack

[x3,y3] = ode45('stackl',x3span,y02);

y03 = y3(xn3,1:7); % only the first 7 elements are used in the hot heat exchanger
[x4,y4] = ode45('ambhx2st1',x4span,y03);% Target Tc at the 1st ambient heat exchanger
y04 = y4(xn2,:);

[x5,y5] = ode45('duct2st1',x5span,y04);

y05 = y5(xnl,:);

y05(1,1) = Tc;

[x6,y6] = ode45('ambhx2st2',x6span,y05);% Temperature at Tc

y06 = [y6(xn2,:) yin(8) yin(9)]'; % Add the 8th element (i.e. H2) for the 2nd stack
[x7,y7] = oded5('stack2',x7span,y06);

y07 = y7(xn3,1:7); % only the first 7 elements are used in the hot heat exchanger
[x8,y8] = ode45('hothx2st2',x8span,y07); % Target Th at 2nd hot heat exchanger

% Combine results of the integration

% This is the result at the end of the 2nd hot heat exchanger

yend = [y8(xn2,:) yin(8) yin(9)]’;

% Compute the target values %

fvec(1,1) = y03(1,1)-Tc; % Find the difference of the targeted cold temperature at ambhx2st1
fvec(6,1) = yend(1,1)-Th;% Find the difference of the targeted hot temperature at hothx2st2
% Find the differences of the target pre, pim, Ure and Uim %

fvec(2:5,1)= yin(2:5,1)-yend(2:5,1);

yend = yend(:); % Show results of the integration at the end

% End of funcv2st.m %
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APPENDIX D. PROPERTIES OF AF 45 GLASS

Mechanical properties:
Density at 20 °C (68 °F): p = 2.72 g/cm’

Young’s modulus: ¢ = 66.0 kKN/mm?
Torsional modulus: E = 26.7 kN/mm®

Poisson’s ratio: y = 0.235
" Electrical properties:
Dielectric constant (1 MHz): €, = 6.2

Dielectric loss factor (1 MHz): tan § = 9 x 10™

Temperature for a specific electrical resistivity of 10° Q cm: T, 4, = 610 °C (1130 °F)

Thermal properties:
Viscosity and corresponding temperatures
Viscosity Temperature Designation
log 1 (d Pas) in °C (°F)
14.5 627 (1161) Strain point
13.0 663 (1225) Annealing point
7.60 883 (1621) Softening point

Transformation temperature: T, = 662 °C (1224 °F)

Coefficient of mean linear thermal expansion: 0,y 55, = 4.5 X 10° K'!
Optical properties:
Refractive indices at 20°C (68°F): n (A = 546 nm) = 1.5275, n; (A = 546 nm) = 1.5255

Abbe value: v = 62.2%

Luminous transmittance (glass thickness 1.1 mm): T, =91.2%
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APPENDIX E.1 CONSTRUCTION DRAWINGS FOR THE PRIME MOVER
STACK HOLDER
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APPENDIX E.2 CONSTRUCTION DRAWINGS FOR THE AMBIENT
HEAT EXCHANGER

Vertical bar
| 00474 0.048+/-0.0(‘)2”
- — ‘!‘IT—; ———————— . + = _—_‘ I—-—- .
0200 ¥ \@4) 0.002" : 0.025+/-0.002”

0.075+/-0.002”

drill-threaded

! ———-] -———I
1.960+/-

0.025+/-0.002" (for 0-80 flat head screw)
0.002”
S
P .
S R— | 0.025” +/-0.002
0.1 Oou+/—:‘tr E 0-048'*‘/‘0.002"
_ 0002 | S
10 slits, 0.025” deep, ] L oo - - - - -
0.028” wide with ' m 0.160 “ (edge to center)
seperation of 0.160” % _ 0.160 “ (center to center)
(center to center) | T 0.160 “ (center to center)
| '
!
0.095 +/-0.002”

176




APPENDIX E.2(CONTINUED) CONSTRUCTION DRAWINGS FOR THE
AMBIENT HEAT EXCHANGER
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APPENDIX E.3 CONSTRUCTION DRAWINGS FOR THE HOT HEAT
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APPENDIX F. GRAPHS OF MATLAB AND MEASURED RESULTS

This section which is divided into two subsections contains graphs of the results of
the MATLAB program and measurements. First, results of the constricted annular prime
mover are presented. Next, some predictied results for the two stack annular prime mover

are provided.
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APPENDIX F.1 RESULTS OF THE CONSTRICTED ANNULAR PRIME
MOVER

Low mode, Resonance frequency vs. DeltaT, Rs = 0.7
435 T 1 1 T
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N
N
131

Frequency (Hz)

415} — Calculated, no end corrections .
---- Calculated, end corrections at constriction(A)

-— - Calculated, end corrections at constriction(B)

— — Calculated, end corrections at constriction & stack (B)
O  Measured data

41 O 1 1 1 1
0 50 100 150 200
Delta T (Kelvin)

Figure F.1-1 Comparisons of the measured and calculated resonance frequencies
of the low mode for the constricted prime mover with the porosity of 0.7.
Method A is the conformation transformation and Method B is the higher order
mode.
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High mode, Resonance frequency vs. DeltaT, Rs =0.7
465 T T T T
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-
S
a

440

435}

T
\
1

— Calculated, no end corrections

----- Calculated, end corrections at constriction(A)

430+ -=- Calculated, end corrections at constriction(B)

- — Calculated, end corrections at constriction & stack (B)
O Measured data

425 H 1 1 1
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Delta T (Kelvin)

Figure F.1-2 Comparisons of the measured and calculated resonance frequencies -
of the high mode for the constricted prime mover with the porosity of 0.7.
Method A is the conformation transformation and Method B is the higher order
mode.
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" Lowmode, Resonance frequency vs. DeltaT , Rs = 0.3
380 T T T

— Calculated, no end corrections

----- Calculated, end corrections at constriction(A)

-—-- Calculated, end corrections at constriction(B)

- — Calculated, end corrections at constriction & stack (B)
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Figure F.1-3 Comparisons of the measured and calculated resonance frequencies
of the low mode for the constricted prime mover with the porosity of 0.3.

Method A is the conformation transformation and Method B is the higher order
mode.
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High mode, Resonance frequency vs. DeltaT , Rs =0.3
485 T T . ¥
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Frequency (Hz)
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4601 — Calculated, no end corrections i
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Figure F.1-4 Comparisons of the measured and calculated resonance frequencies
of the high mode for the constricted prime mover with the porosity of 0.3.
Method A is the conformation transformation and Method B is the higher order
mode.
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Low mode with end effect 2 ; dT = 0 Kelvin ; freq = 417.9+2.149i : Rs = 0.7
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Figure F.1-5 Mode shape of the low mode of the constricted prime mover
(Rs=0.7) when the driver is located 45° from the stack and AT=0 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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Low mode with end effect 2 ; dT = 77.03 Kelvin ; freq = 420.5+1.801i ; Rs = 0.7
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Figure F.1-6 Mode shape of the low mode of the constricted prime mover
(Rs=0.7) when the driver is located 45° from the stack and AT=77 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value. '
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Figure F.1-7 Mode shape of the low mode of the constricted prime mover
(Rs=0.7) when the driver is located 45° from the stack and AT=231K. The

calculated results are based on the higher order mode method. The frequency is

the calculated value.
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High mode with end effect 2 ; dT = 0 Kelvin ; freq = 438.7+5.992i ; Rs = 0.7
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Figure F.1-8 Mode shape of the high mode of the constricted prime mover
(Rs=0.7) when the driver is located 45° from the stack and AT=0 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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Figure F.1-9 Mode shape of the high mode of the constricted prime mover
(Rs=0.7) when the driver is located 45° from the stack and AT=77 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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Figure F.1-10 Mode shape of the high mode of the constricted prime mover
(Rs=0.7) when the driver is located 45° from the stack and AT=231 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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Low mode with end corrections ; dT = 228.2 Kelvin ; freq = 307.4-1.165i ; Rs = 0.1
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Figure F.1-11 Mode shape of the low mode of the constricted prime mover
(Rs=0.1) when the driver is located 45° from the stack and AT=228 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value. Symbol * represents the mode shape above onset, the
measured frequency is 312 Hz.
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Low mode with end effect 2 ; dT = 0.2 Kelvin ; freq = 361.7+2.619i ; Rs = 0.3
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Figure F.1-12 Mode shape of the low mode of the constricted prime mover
(Rs=0.3) when the driver is located 45° from the stack and AT=0 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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Low mode with end effect 2 ; dT = 71.73 Kelvin ; freq = 362.6+1.847i; Rs = 0.3
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Figure F.1-13 Mode shape of the low mode of the constricted prime mover
(Rs=0.3) when the driver is located 45° from the stack and AT=72 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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Low mode with end effect 2 ; dT = 226.5 Kelvin ; freq = 369.9+0.2682i ; Rs = 0.3

Figure F.1-14 Mode shape of the low mode of the constricted prime mover
(Rs=0.3) when the driver is located 45° from the stack and AT=227 K. The |

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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High mode with end effect 2 ; dT = 0.2 Kelvin ; freq = 466.9+6.538i ; Rs = 0.3
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Figure F.1-15 Mode shape of the high mode of the constricted prime mover
(Rs=0.3) when the driver is located 45° from the stack and AT=0 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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High mode with end effect 2 ; dT = 71.73 Kelvin ; freq = 468.7+6.194i ; Rs = 0.3
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Figure F.1-16 Mode shape of the high mode of the constricted prime mover

(Rs=0.3) when the driver is located 45° from the stack and AT=72 K. The ‘

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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Figure F.1-17 Mode shape of the high mode of the constricted prime mover
(Rs=0.3) when the driver is located 45° from the stack and AT=227 K. The

calculated results are based on the higher order mode method. The frequency is
the calculated value.
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Low mode with end effect 3 ; dT = 0 Kelvin ; freq = 295.6+3.873i ; Rs = 0.1
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Figure F.1-18 Mode shape of the low mode of the constricted prime mover

(Rs=0.1) when the driver is located 45° from the stack and AT=0 K. The

calculated results are based on the higher order méde method and the end
corrections of the stack are included. The frequency is the calculated value.
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Figure F.1-19 Mode shape of the low mode of the constricted prime mover
(Rs=0.1) when the driver is located 45° from the stack and AT=228 K. The

calculated results are based on the higher order mode method and the end

corrections of the stack are included. The frequency is the calculated value.
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High mode with end effect 3 ; dT = 0 Kelvin ; freq = 468.8+9.638i ; Rs = 0.1
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Figure F.1-20 Mode shape of the high mode of the constricted prime mover
(Rs=0.1) when the driver is located 45° from the stack and AT=0 K. The

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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Figure F.1-21 Mode shape of the high mode of the constricted prime mover
(Rs=0.1) when the driver is located 45° from the stack and AT=228 K. The

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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Figure F.1-22 Mode shape of the low mode of the constricted prime mover
(Rs=0.3) when the driver is located 45° from the stack and AT=0 K. The

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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Figure F.1-23 Mode shape of the low mode of the constricted prime mover
(Rs=0.3) when the driver is located 45° from the stack and AT=227 K. The

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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High mode with end effect 3 ; dT = 0.2 Kelvin ; freq = 461.9+9.625i ; Rs = 0.3
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Figure F.1-24 Mode shape of the high mode of the constricted prime mover
(Rs=0.3) when the driver is located 45° from the stack and AT=0 K. The

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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Figure F.1-25 Mode shape of the high mode of the constricted prime mover
(Rs=0.3) when the driver is located 45° from the stack and AT=227 K. The

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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Figure F.1-26 Mode shape of the low mode of the constricted prime mover
(Rs=0.7) when the driver is located 45° from the stack and AT=0 K. The

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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Low mode with end effect 3 ; dT = 231 Kelvin ; freq = 428.8+0.4826i ; Rs = 0.7
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Figure F.1-27 Mode shape of the low mode of the constricted prime mover

(Rs=0.7) when the driver is located 45° from the stack and AT=231 K. The

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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Figure F.1-28 Mode shape of the high mode of the constricted prime mover
(Rs=0.7) when the driver is located 45° from the stack and AT=0 K. The |

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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High mode with end effect 3 ; dT = 231 Kelvin ; freq = 456.3+9.995i : Rs = 0.7
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Figure F.1-29 Mode shape of the high mode of the constricted prime mover
(Rs=0.7) when the driver is located 45° from the stack and AT=231 K. The

calculated results are based on the higher order mode method and the end
corrections of the stack are included. The frequency is the calculated value.
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APPENDIX F.2 RESULTS OF THE TWO STACK ANNULAR
PRIME MOVER

Mode shape for of the two stack prime mover, dT = 25K; freq = 425+7.421i
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Figure F.2-1 The calculated mode shape of the high mode of the two stack
annular prime mover at AT =25 K. Case 1: The duct between the two hot heat

exchangers is held at 7.
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Normalized pressure

Mode shape for of the two stack prime mover, dT = -5.466e-05K; freq = 424+7.234i
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Figure F.2-2 The calculated mode shape of the low mode of the two stack
annular prime mover at AT = 0 K. Case 1: The duct between the two hot heat

exchangers is held at T,
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